Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling MongoDB | Sergey Gavruk
Search
Minsk MongoDB User Group
October 04, 2012
Programming
2
190
Scaling MongoDB | Sergey Gavruk
Sergey Gavruk
Meetup #7
Minsk MongoDB User Group
October 04, 2012
Tweet
Share
More Decks by Minsk MongoDB User Group
See All by Minsk MongoDB User Group
MongoDB by Chef | Yauhen Artsiukhou
bymongo
0
130
MongoDB at IronMQ | Alexander Kolesen
bymongo
0
850
Event sourcing + CQRS + MongoDB | Alex Shkor
bymongo
1
650
How it works. Indexes | Kirill Duborenko
bymongo
5
290
Aggregation Framework | Mikhail Burtylev
bymongo
1
110
MongoDB 2.2: Release update + Roadmap | Alvin Richards
bymongo
1
110
Meetup#6 Intro | Alex Litvinok
bymongo
1
55
Deploying MongoDB on Amazon WS | Michael Karpitsky
bymongo
2
120
About the problem of DBMS choice & what to do if you have gone the wrong way | Roman Bugaev
bymongo
3
120
Other Decks in Programming
See All in Programming
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
2
530
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
570
Go コードベースの構成と AI コンテキスト定義
andpad
0
130
Jetpack XR SDKから紐解くAndroid XR開発と技術選定のヒント / about-androidxr-and-jetpack-xr-sdk
drumath2237
1
180
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
4
950
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
270
クラウドに依存しないS3を使った開発術
simesaba80
0
150
認証・認可の基本を学ぼう前編
kouyuume
0
270
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
230
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
170
マスタデータ問題、マイクロサービスでどう解くか
kts
0
110
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
120
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
527
40k
Ruling the World: When Life Gets Gamed
codingconduct
0
96
How to Ace a Technical Interview
jacobian
281
24k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.4k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
2
250
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
Getting science done with accelerated Python computing platforms
jacobtomlinson
0
76
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
37
Transcript
Scaling Sergey Gavruk @gavruk
Scaling • Ver2cal • Horizontal • By op2miza2on – Op2mize
your queries, schema, indexes – Tune you file system – Choose right disks
Share nothing architecture • Michael Stonebraker First
implementa2on in 1983 Google calls this “Sharding”
Sharding goals • App doesn’t know about clusters • Cluster
should always be available for reads and writes • Cluster should grow easily
Sharding features • Range-‐based data par22oning • Automa2c
data volume distribu2on • Transparent query rou2ng
[“a”, “g”) [“g”, “m”) [“m”, “s”) [“s”,
“z”)
[“a”, “g”) [“g”, “m”) [“m”, “s”) [“s”,
“z”) [“d”, “g”) 100 GB 500 GB 100 GB 100 GB 100 GB 400 GB 200 GB 100 GB
[“a”, “g”) [“g”, “m”) [“m”, “s”) [“s”,
“z”)
[“a”, “d”) 300 [“g”, “k”) 300 [“m”,
“s”) [“s”, “z”) 400 GB 400 GB 100 GB 100 GB [“d”, “g”) 100 [“k”, “m”) 100
None
Chunks -‐∞ +∞
Chunks -‐∞ +∞
null Numbers Strings Objects Arrays
binary data ObjectIds booleans Dates regular expressions smaller bigger
Balancing mongos balancer Config server Config
server Config server Shard 1 Shard 2
Balancer goals • keep data distributed • minimize the amount
of data transfered
Balancing mongos balancer Config server Config
server Config server Shard 1 Shard 2 Move chunk X to shard 2
Balancing Number of chunks Migra:on threshold <
20 2 21-‐80 4 80+ 8
Balancing schedule db.seangs.update({ _id : "balancer" },
{ $set : { ac2veWindow : { start : "23:00", stop : "6:00" } } }, true )
Routed Request mongos Shard 1 Shard 2
Shard 3
mongos Shard 1 Shard 2 Shard 3
Request without shard key
Without shard key + sor2ng mongos Shard 1
Shard 2 Shard 3
Consider the shard cluster if: • Data exceeds the
storage capacity of a single node • Size of working set will soon exceed your RAM • Large amount of writes
Restric2ons • You cannot update a shard key
• You must use a shard key for a single update • Index on shard key
Ideal shard key • easily divisible. • will
distribute write opera2ons among the cluster • will make it possible for the mongos to return most query opera2ons directly from a single specific mongod instance
Choosing a shard key {
_id: "1", user_id: "2345652221", date_2me: "2012-‐10-‐04“, tweet_text: “Hello world” } Reliability
Choosing a shard key Ascending { TimeStamp:
12355232, … }
Choosing a shard key Low-‐cardinality key {
Con:nent: “Europe”, Name: “Tom”, … } Zip code?
Demo
Any questions? mailto:
[email protected]