$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
生成AI_その前_に_マルチクラウド時代の信頼できるデータを支えるSnowflakeメタ...
Search
mikami
September 30, 2025
Technology
0
200
生成AI_その前_に_マルチクラウド時代の信頼できるデータを支えるSnowflakeメタデータ活用術.pdf
mikami
September 30, 2025
Tweet
Share
More Decks by mikami
See All by mikami
クロスクラウドデータ管理の未来:BigLakeで実現するAWS S3とBigQueryのデータ統合戦略/cross-cloud-biglake-s3-strategy-20240712
cm_mikami
0
650
Other Decks in Technology
See All in Technology
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
120
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
2.3k
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
6
1.5k
TED_modeki_共創ラボ_20251203.pdf
iotcomjpadmin
0
140
ActiveJobUpdates
igaiga
1
310
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.2k
Amazon Quick Suite で始める手軽な AI エージェント
shimy
1
1.7k
Knowledge Work の AI Backend
kworkdev
PRO
0
200
Connection-based OAuthから学ぶOAuth for AI Agents
flatt_security
0
350
障害対応訓練、その前に
coconala_engineer
0
190
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
220
【開発を止めるな】機能追加と並行して進めるアーキテクチャ改善/Keep Shipping: Architecture Improvements Without Pausing Dev
bitkey
PRO
1
120
Featured
See All Featured
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
43
Marketing to machines
jonoalderson
1
4.3k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Navigating Weather and Climate Data
rabernat
0
51
The Language of Interfaces
destraynor
162
25k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
37
The agentic SEO stack - context over prompts
schlessera
0
560
Building Adaptive Systems
keathley
44
2.9k
Thoughts on Productivity
jonyablonski
73
5k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
⽣成AI「その前」に! マルチクラウド時代の信頼できるデータ を⽀えるSnowflakeメタデータ活⽤術 三上 裕貴 データ事業本部 ビジネスソリューション部 イニシアティブチーム
2 クラスメソッド株式会社 データ事業本部 ビジネスソリューション部 イニシアティブチーム 三上 裕貴(みかみ ゆき) 出⾝地:東京 現在:名護市在住 職歴
• 組み込みエンジニア • Webエンジニア 業務内容 • データ分析基盤構築 • チーム/プロジェクト管理 • プリセールス • 採⽤活動 ⾃⼰紹介
3 今⽇話すこと/話さないこと 話すこと • Snowflakeのメタデータ管理機能の紹介 • セマンティックビューを利⽤したCortex Analystの回答精度 話さないこと •
環境構築⼿順 • Snowflake Deep Dive
はじめに
5 Snowflakeとは?
6 パブリッククラウド上のSaaS型データ分析プラットフォーム • マルチクラスタ共有データアーキテクチャ • 柔軟なスケーラビリティ • (ほぼ)ゼロメンテナンス • 標準SQL対応
• タイムトラベル機能あり • セキュアデータ共有 • 従量課⾦性 ※抜粋:https://docs.snowflake.com/ja/user-guide/intro-key-concepts
7 メタデータって、何?
8 メタデータ = データに関するデータ データの取扱説明書。 例えば、 • 本の⽬次 • 商品のバーコード
• 映画の字幕 • 写真のExif情報 • HTMLの<head>タグ
9 ⽣成AIとメタデータ、どんな関係があるの?
10 メタデータは⽣成AIの精度を左右する要素 料理のレシピのようなもの。 例えば、 「ふーチャンプルーを作りたい!」 • AI = ⼈ •
データ = 麩、卵、ポーク、にんじん、ニラ • メタデータ = レシピ
Snowflakeのメタデータ管理
12 データ品質管理
データ品質管理 13 「データ品質」タグ表⽰ • NULLチェック • 最⼤/最⼩値チェック • データの分布
データ品質管理 14 DMFs(Data Metric Functions) • データ品質チェック • データプロファイリング •
システムDMFs/カスタムDMFs ※抜粋:https://docs.snowflake.com/ja/user-guide/data-quality-system-dmfs
データ品質管理 15 カスタムDMFs マスタに存在しない商品 コードがないかチェック
データ品質管理 16 品質チェックタスク実装 email⽂字列の正当性 チェック チェック結果(アラート送信)
17 データリネージ
データリネージ 18 • データの繋がりを可視化 • ソースデータがどこにあるかも確認可能 「系列」タブ
データリネージ 19 • どうやって作成されたかも確認できるので、どれが正しいデータか分かる。 例えば:同名テーブルがあって、どちらが正しいデータかわからない。。
20 セマンティックレイヤー
セマンティックレイヤー 21 • ビジネス⽤語とデータのマッピング • データの抽象化レイヤー • データアクセスの抽象化層 • ⼈やAIとデータの仲介役
セマンティックレイヤーとは? LookerにおけるLookMLや JavaにおけるDAOのようなもの
セマンティックレイヤー 22 セマンティックモデル • Cortex Analystの精度向上のた めのオブジェクト • YAMLファイルとしてステージ に保存
セマンティックビュー • セマンティックモデルの進化系 • SQLでアクセス可能 • スキーマレベルオブジェクト ※抜粋:https://docs.snowflake.com/en/user-guide/views-semantic/overview Snowflakeのセマンティックモデル/ビュー
セマンティックビュー 23 テーブル状況 • 顧客、商品、注⽂、注⽂商品テーブル • データ投⼊済み
セマンティックビュー 24 ビュー作成 TABLES 対象テーブル RELATIONSHIPS 外部キー関係 FACTS 分析⽤の事実データ(数値、識別⼦) DIMENSIONS
分析の軸となる属性データ (商品名、注⽂⽇など) METRICS ビジネス指標の計算ロジック
セマンティックビュー 25 Cortex Analystから⾃然⾔語で問い合わせ Cortex AnalystのURL作成 「最も多く購⼊している顧客は?」 「最も⼈気のある商品カテゴリは?」
セマンティックビュー 26 SQLで答え合わせ 「最も多く購⼊している顧客は?」 →佐藤花⼦:158,500円 「最も⼈気のある商品カテゴリは?」 →ファッション:12個
マルチクラウド環境で セマンティックビューを活⽤
マルチクラウド×セマンティックビュー 28 テーブル状況 • AWS S3に顧客マスタ ◦ 顧客ID:CUSTOMER_ID • Google
Cloud Storageに売上データ ◦ 顧客ID:CLIENT_ID • Snowflakeで外部テーブル作成
29 セマンティックビュー作成&Cortex Analystで問い合わせ 認識してもらえなかった。。 マルチクラウド×セマンティックビュー
30 セマンティックビュー修正 マルチクラウド×セマンティックビュー 物理クエリも良さそう。 ※ビューのエイリアスが⽇本語だと、 ⽂字列を計算しようとしてSQLエラー。。
31 答え合わせ マルチクラウド×セマンティックビュー → ID 1:153,000(150,000 + 3000) ID 2:80,000 ID
3:45,000 ID 4:8,000
まとめ
まとめ 33 • メタデータ整備は⼤事 ◦ データ品質管理、リネージ、セマンティックレイヤーが⽣成AI活⽤に影響 • ⽣成AIの正確な答えはデータ&メタデータ次第 ◦ セマンティックビューでCortex
Analystの回答精度が向上 • Snowflakeのメタデータ管理機能はマルチクラウドに対応 ◦ DMFs、データリネージ、セマンティックビュー ◦ プレビュー機能や⽇本語精度など、実運⽤への適⽤には注意が必要
ちょっと宣伝です。
35 Snowflake データ基盤構築⽀援
36 データエンジニア募集中!
None