Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 AAAI2021 | Knowledge-Enhanced Top-K Recom...
Search
cocomoff
July 04, 2023
Research
0
63
論文読み会 AAAI2021 | Knowledge-Enhanced Top-K Recommendation in Poincaré Ball
論文読み会の資料です.
(A slide for the paper-reading activity at my company, written in Japanese.)
cocomoff
July 04, 2023
Tweet
Share
More Decks by cocomoff
See All by cocomoff
論文読み会 NeurIPS2024 | UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction
cocomoff
1
13
論文読み会 AMAI | Personalized choice prediction with less user information
cocomoff
0
33
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
180
論文読み会 KDD2022 | Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation
cocomoff
0
86
論文読み会 AISTATS2024 | Deep Learning-Based Alternative Route Computation
cocomoff
0
33
論文読み会 WWW2022 | Learning Probabilistic Box Embeddings for Effective and Efficient Ranking
cocomoff
0
270
ClimaX: A foundation model for weather and climate
cocomoff
0
540
論文読み会 AAAI2022 | MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers
cocomoff
0
200
論文読み会 EMNLP2021 | Decision-Focused Summarization
cocomoff
0
190
Other Decks in Research
See All in Research
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
0
120
3D Gaussian Splattingによる高効率な新規視点合成技術とその応用
muskie82
0
240
コーパスを丸呑みしたモデルから言語の何がわかるか
eumesy
PRO
11
3.3k
IM2024
mamoruk
0
250
Remote Sensing Vision-Language Foundation Models without Annotations via Ground Remote Alignment
satai
3
180
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
350
ラムダ計算の拡張に基づく 音楽プログラミング言語mimium とそのVMの実装
tomoyanonymous
0
440
ナレッジプロデューサーとしてのミドルマネージャー支援 - MIMIGURI「知識創造室」の事例の考察 -
chiemitaki
0
250
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
6
5k
rtrec@dbem6
myui
6
640
Weekly AI Agents News! 12月号 論文のアーカイブ
masatoto
0
250
The many faces of AI and the role of mathematics
gpeyre
1
1.7k
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
51
7.5k
Designing Experiences People Love
moore
141
23k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
Scaling GitHub
holman
459
140k
Testing 201, or: Great Expectations
jmmastey
42
7.4k
GraphQLとの向き合い方2022年版
quramy
45
14k
Producing Creativity
orderedlist
PRO
344
40k
Side Projects
sachag
452
42k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.7k
Docker and Python
trallard
44
3.3k
Agile that works and the tools we love
rasmusluckow
328
21k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
Knowledge-Enhanced Top-K Recommendation in Poincaré Ball 著者: Chen Ma, Liheng
Ma, Yingxue Zhang, Haolun Wu, Xue Liu, Mark Coates (McGill Univ. & Huawei Noah's Ark Lab Montreal) 学会: AAAI2021 2023-7-4 @cocomoff 1/17
発表の内容 推薦モデル + 知識グラフ 推薦モデル: 過去のログから (未知) アイテムの評価値を推定する 知識グラフ: 外部知識を表現する
(e.g., 同じ監督の作品; directed_by) 著者らの4つの貢献 (3つの技術的な貢献+実験) (1) 双極空間を活用した推薦(RS)+知識グラフ(KG)を提案した (2) KGの情報を活用するためにアテンションのような構造を導入した (3) ハイパーパラメータに対処するためにバイレベル最適化を導入した (4) 実験で性能を確認した 2/17
概要 (イントロ) 推薦モデル (例: アイテムの評価値を計算する) + 知識グラフ (例: 同じ監督) KG活用のこれまでのアプローチと課題
[アプローチ] Path-based: KG上の経路を使って高次の情報を活用する [アプローチ] Regularization-based: KG由来のロスを追加する [課題] KG埋め込みがユークリッド空間 [課題] KG上で隣接するentityの扱いが効率的ではなかった [課題] KG由来のロスを制御するハイパーパラメータの調整が難しかった 提案手法 (後述) は前ページの3つの技術的な貢献によって良い性能を出した 3/17
(1) 双極空間を活用した推薦(RS)+知識グラフ(KG)を提案した (2) KGの情報を活用するためにアテンションのような構造を導入した 4/17
ポアンカレ埋め込みの復習 非ユークリッド空間の1つである、双極空間に埋め 込む手法の代表例 (NeurIPS2017) 次元 、半径 の空間 ; . 局所的な測り方
ユークリッド空間: ; 円周に近づくと無限 距離 (歪んでるので測地線を使う) として : メビウス和 (右) 歴史的には他にもあった 勾配法は少し改造 (Riemannian SGD) 勾配を求めて、軽量を直して (歪み補正)、更新して、歪んだ空間に戻す 5/17
埋め込みベクトルとランキングロス・知識グラフ ランキングロス [前ページ] ベクトル の間の距離 が得られた ユーザ と アイテム の距離
を用いてランキングロスを考える ユーザ 、正例 、負例 について: KG 知識グラフ あるアイテム のKG情報 TransE-styleの埋め込みを考える (ユークリッド空間で のこと) ポアンカレ空間上の距離が近いと大きくなる重み 6/17
知識グラフの活用 近傍の情報を集約すれば良いが、曲がっている空間で重み付き集約できるのか 提案手法: hyperbolic attention [知見1] 双極空間モデルの1つであるクライン円盤モデルでは、Einstein midpoint という名前のものが存在することが知られている [知見2]
クライン円盤モデル( )とポアンカレボール( )は対応関係がある 対応関係は 7/17
知識グラフの活用(全体のロス) ポアンカレ埋め込みを学習するとき、知識グラフのデータを活用したい 英語: "The goal is to transfer the inductive
bias in KG to the item representation:" 乖離具合を評価するために、集約したものと学習している埋め込みベクトルとの距離 を使う 全体のロスは 8/17
(3) ハイパーパラメータに対処するためにバイレベル最適化を導入した 9/17
ロスのパラメータ化とバイレベル最適化 これまでもロスをくっつけるタイプの枠組みはあったが [課題1] ハイパラ の扱いが微妙だった (固定するとデータセットで異なる) [課題2] そもそもアイテム によって の強さが変わりそう
[課題3] 学習が進んでいくとそもそも の調整がいりそう 対策: ロスをパラメタライズする: . バイレベル最適化 (最適化が入れ子になったやつ。NASがとかもそう) に落とし込む 内側 (inner): を固定したときの全体ロス最良な を求める 外側 (outer): に対してランキングロス最良な を求める 10/17
バイレベル最適化を交互最適化と正則化を着けて解く 入れ子になっていても勾配は近似できる 近似関係を使って更新式を代用する (define a proxy function to link ...)
あとは と を順番に更新する Adamを使う 正則化も乗っている 結局ハイパラ は復活したけど、[課題 2]と[課題3] は対応できてそう 11/17
バイレベル最適化のブロック図 12/17
(4) 実験で性能を確認した 13/17
データセット・比較手法・結果 推薦でよく出てくるデータセット: Amazon-book、Last-FM、Yelp2018 いずれも80%を学習データ (内10%がvalidation)に、20%をテストデータに 評価指標: Recall@K と NDCG@K 比較手法
Factorization Machine とそのニューラルタイプ: MF/NMF 既存のKG活用手法: CKE (MF+TransR)/CFKG (TransE)/RippleNet/GC- MC (GCN)/KGAT 提案手法 Hyper-Know 14/17
Ablation BPR + E/H (Euclidean v.s. Hyperbolic) BPR + Att
+ E/H (Hyperbolic Attentionの比較) BPR + Avg + H (BPR + Att + H のAttをただの平均に置き換えた) Hyper-Know (全部) 15/17
計算時間・埋め込みの可視化 効率的 埋め込みを可視化した例 (3階層ぐらいを学習した) 16/17
まとめ (再掲) 推薦モデル + 知識グラフ 推薦モデル: 過去のログから (未知) アイテムの評価値を推定する 知識グラフ:
外部知識を表現する (e.g., 同じ監督の作品; directed_by) 著者らの4つの貢献 (3つの技術的な貢献+実験) (1) 双極空間を活用した推薦(RS)+知識グラフ(KG)を提案した (2) KGの情報を活用するためにアテンションのような構造を導入した (3) ハイパーパラメータに対処するためにバイレベル最適化を導入した (4) 実験で性能を確認した 17/17