Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 AAAI2021 | Knowledge-Enhanced Top-K Recom...
Search
cocomoff
July 04, 2023
Research
0
93
論文読み会 AAAI2021 | Knowledge-Enhanced Top-K Recommendation in Poincaré Ball
論文読み会の資料です.
(A slide for the paper-reading activity at my company, written in Japanese.)
cocomoff
July 04, 2023
Tweet
Share
More Decks by cocomoff
See All by cocomoff
論文読み会 NeurIPS2024 | UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction
cocomoff
1
81
論文読み会 AMAI | Personalized choice prediction with less user information
cocomoff
0
64
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
250
論文読み会 KDD2022 | Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation
cocomoff
0
150
論文読み会 AISTATS2024 | Deep Learning-Based Alternative Route Computation
cocomoff
0
51
論文読み会 WWW2022 | Learning Probabilistic Box Embeddings for Effective and Efficient Ranking
cocomoff
0
320
ClimaX: A foundation model for weather and climate
cocomoff
0
600
論文読み会 AAAI2022 | MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers
cocomoff
0
250
論文読み会 EMNLP2021 | Decision-Focused Summarization
cocomoff
0
230
Other Decks in Research
See All in Research
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
110
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
超高速データサイエンス
matsui_528
1
330
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
190
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
210
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
230
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
110
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
210
Remote sensing × Multi-modal meta survey
satai
4
650
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
300
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
130
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
30
Ruling the World: When Life Gets Gamed
codingconduct
0
100
Joys of Absence: A Defence of Solitary Play
codingconduct
1
260
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
230
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
870
Skip the Path - Find Your Career Trail
mkilby
0
27
Evolving SEO for Evolving Search Engines
ryanjones
0
73
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Transcript
Knowledge-Enhanced Top-K Recommendation in Poincaré Ball 著者: Chen Ma, Liheng
Ma, Yingxue Zhang, Haolun Wu, Xue Liu, Mark Coates (McGill Univ. & Huawei Noah's Ark Lab Montreal) 学会: AAAI2021 2023-7-4 @cocomoff 1/17
発表の内容 推薦モデル + 知識グラフ 推薦モデル: 過去のログから (未知) アイテムの評価値を推定する 知識グラフ: 外部知識を表現する
(e.g., 同じ監督の作品; directed_by) 著者らの4つの貢献 (3つの技術的な貢献+実験) (1) 双極空間を活用した推薦(RS)+知識グラフ(KG)を提案した (2) KGの情報を活用するためにアテンションのような構造を導入した (3) ハイパーパラメータに対処するためにバイレベル最適化を導入した (4) 実験で性能を確認した 2/17
概要 (イントロ) 推薦モデル (例: アイテムの評価値を計算する) + 知識グラフ (例: 同じ監督) KG活用のこれまでのアプローチと課題
[アプローチ] Path-based: KG上の経路を使って高次の情報を活用する [アプローチ] Regularization-based: KG由来のロスを追加する [課題] KG埋め込みがユークリッド空間 [課題] KG上で隣接するentityの扱いが効率的ではなかった [課題] KG由来のロスを制御するハイパーパラメータの調整が難しかった 提案手法 (後述) は前ページの3つの技術的な貢献によって良い性能を出した 3/17
(1) 双極空間を活用した推薦(RS)+知識グラフ(KG)を提案した (2) KGの情報を活用するためにアテンションのような構造を導入した 4/17
ポアンカレ埋め込みの復習 非ユークリッド空間の1つである、双極空間に埋め 込む手法の代表例 (NeurIPS2017) 次元 、半径 の空間 ; . 局所的な測り方
ユークリッド空間: ; 円周に近づくと無限 距離 (歪んでるので測地線を使う) として : メビウス和 (右) 歴史的には他にもあった 勾配法は少し改造 (Riemannian SGD) 勾配を求めて、軽量を直して (歪み補正)、更新して、歪んだ空間に戻す 5/17
埋め込みベクトルとランキングロス・知識グラフ ランキングロス [前ページ] ベクトル の間の距離 が得られた ユーザ と アイテム の距離
を用いてランキングロスを考える ユーザ 、正例 、負例 について: KG 知識グラフ あるアイテム のKG情報 TransE-styleの埋め込みを考える (ユークリッド空間で のこと) ポアンカレ空間上の距離が近いと大きくなる重み 6/17
知識グラフの活用 近傍の情報を集約すれば良いが、曲がっている空間で重み付き集約できるのか 提案手法: hyperbolic attention [知見1] 双極空間モデルの1つであるクライン円盤モデルでは、Einstein midpoint という名前のものが存在することが知られている [知見2]
クライン円盤モデル( )とポアンカレボール( )は対応関係がある 対応関係は 7/17
知識グラフの活用(全体のロス) ポアンカレ埋め込みを学習するとき、知識グラフのデータを活用したい 英語: "The goal is to transfer the inductive
bias in KG to the item representation:" 乖離具合を評価するために、集約したものと学習している埋め込みベクトルとの距離 を使う 全体のロスは 8/17
(3) ハイパーパラメータに対処するためにバイレベル最適化を導入した 9/17
ロスのパラメータ化とバイレベル最適化 これまでもロスをくっつけるタイプの枠組みはあったが [課題1] ハイパラ の扱いが微妙だった (固定するとデータセットで異なる) [課題2] そもそもアイテム によって の強さが変わりそう
[課題3] 学習が進んでいくとそもそも の調整がいりそう 対策: ロスをパラメタライズする: . バイレベル最適化 (最適化が入れ子になったやつ。NASがとかもそう) に落とし込む 内側 (inner): を固定したときの全体ロス最良な を求める 外側 (outer): に対してランキングロス最良な を求める 10/17
バイレベル最適化を交互最適化と正則化を着けて解く 入れ子になっていても勾配は近似できる 近似関係を使って更新式を代用する (define a proxy function to link ...)
あとは と を順番に更新する Adamを使う 正則化も乗っている 結局ハイパラ は復活したけど、[課題 2]と[課題3] は対応できてそう 11/17
バイレベル最適化のブロック図 12/17
(4) 実験で性能を確認した 13/17
データセット・比較手法・結果 推薦でよく出てくるデータセット: Amazon-book、Last-FM、Yelp2018 いずれも80%を学習データ (内10%がvalidation)に、20%をテストデータに 評価指標: Recall@K と NDCG@K 比較手法
Factorization Machine とそのニューラルタイプ: MF/NMF 既存のKG活用手法: CKE (MF+TransR)/CFKG (TransE)/RippleNet/GC- MC (GCN)/KGAT 提案手法 Hyper-Know 14/17
Ablation BPR + E/H (Euclidean v.s. Hyperbolic) BPR + Att
+ E/H (Hyperbolic Attentionの比較) BPR + Avg + H (BPR + Att + H のAttをただの平均に置き換えた) Hyper-Know (全部) 15/17
計算時間・埋め込みの可視化 効率的 埋め込みを可視化した例 (3階層ぐらいを学習した) 16/17
まとめ (再掲) 推薦モデル + 知識グラフ 推薦モデル: 過去のログから (未知) アイテムの評価値を推定する 知識グラフ:
外部知識を表現する (e.g., 同じ監督の作品; directed_by) 著者らの4つの貢献 (3つの技術的な貢献+実験) (1) 双極空間を活用した推薦(RS)+知識グラフ(KG)を提案した (2) KGの情報を活用するためにアテンションのような構造を導入した (3) ハイパーパラメータに対処するためにバイレベル最適化を導入した (4) 実験で性能を確認した 17/17