DeNA には優秀な Kaggler が多く在籍しており、機械学習の課題発見や高精度なモデリングに大きな強みを持っています。一方で機械学習モデルのプロダクション化は Kaggler の開発サイクルと比べて時間がかかりがちです。
そこで、DeNA では Kaggler が自身の得意分野に注力しつつ自然と production ready なものが出来上がるように「Hekatoncheir」という機械学習基盤を作成しました。Hekatoncheir は Google Cloud Platform の AI Platform など既存のツールを組合せて、コンペティションという Kaggle like な形式で事業課題を解決する仕組として開発・運用されています。
コンペティションという形で、コンペ参加者が担う純粋な機械学習アルゴリズムの実装とコンペ主催者が担う周辺タスクの境界を明確にしつつ、両者のコミュニケーションコストを削減します。結果として開発サイクルが早まり、実サービスへより気軽に機械学習を導入できるようになりました。
本発表では、Hekatoncheir が作られた背景や技術選定・アーキテクチャについて解説します。また、活用例として Pococha などの実サービスで、プロダクト投入までのリードタイムを短縮しつつ高頻度でのモデルの更新を実現している事例についても紹介します。