Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Chatbot Arena 大規模言語モデル(LLM)のベンチマーク・プラットフォーム
Search
eiji kawada
May 14, 2024
Programming
0
250
Chatbot Arena 大規模言語モデル(LLM)のベンチマーク・プラットフォーム
大規模言語モデル(LLM)のベンチマーク・プラットフォーム Chatbot Arena の解説スライド。レイティングの公式についても解説している。
eiji kawada
May 14, 2024
Tweet
Share
Other Decks in Programming
See All in Programming
AWS で実現する安全な AI エージェントの作り方 〜 Bedrock Engineer の実装例を添えて 〜 / how-to-build-secure-ai-agents
gawa
8
800
Lambda(Python)の リファクタリングが好きなんです
komakichi
3
190
API for docs
soutaro
2
1.2k
これだけは知っておきたいクラス設計の基礎知識 version 2
masuda220
PRO
24
6.4k
SEAL - Dive into the sea of search engines - Symfony Live Berlin 2025
alexanderschranz
1
130
AIコードエディタの基盤となるLLMのFlutter性能評価
alquist4121
0
210
VitestのIn-Source Testingが便利
taro28
5
1.2k
音声プラットフォームのアーキテクチャ変遷から学ぶ、クラウドネイティブなバッチ処理 (20250422_CNDS2025_Batch_Architecture)
thousanda
0
170
The Efficiency Paradox and How to Save Yourself and the World
hollycummins
0
110
複雑なフォームの jotai 設計 / Designing jotai(state) for Complex Forms #layerx_frontend
izumin5210
3
750
Being an ethical software engineer
xgouchet
PRO
0
210
Unlock the Potential of Swift Code Generation
rockname
0
250
Featured
See All Featured
Side Projects
sachag
452
42k
Embracing the Ebb and Flow
colly
85
4.6k
The World Runs on Bad Software
bkeepers
PRO
67
11k
The Invisible Side of Design
smashingmag
299
50k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Unsuck your backbone
ammeep
670
57k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.4k
Designing for humans not robots
tammielis
252
25k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
9
750
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.8k
How to train your dragon (web standard)
notwaldorf
90
6k
Transcript
Chatbot Arena 大規模言語モデル(LLM)のベンチマーク・プラットフォーム © dotEQ, Ltd.
Chatbot Arena 大規模言語モデル(LLM)のベンチマーク・プラットフォーム 人間によるペアワイズ比較を用いた投票による LLM の性能を評価 Elo レーティングにより、投票結果のベンチマークスコアを計算 参照:Chatbot Arena:
Benchmarking LLMs in the Wild with Elo Ratings | LMSYS Org © dotEQ, Ltd. 1 1
優れたベンチマークシステムに求められる特性 スケーラビリティ(Scalability) 可能性のあるすべてのモデルペアについて十分なデータを収集することが不可能な 場合、システムは多数のモデルに対してスケールすべきである 増分性(Incrementality) 比較的少ない試行回数で新しいモデルを評価できること 一意の順序(Unique order) システムは、すべてのモデルに対して一意な順序を提供すべきである 2
つのモデルがあった場合、どちらの順位が高いか、あるいは同順位かどうかを知 ることができなければならない © dotEQ, Ltd. 2 2
既存の LLM ベンチマークシステムの問題点 HELM/lm-evaluation-harness など古典的な LLM ベンチマークフレームワーク ペアワイズ比較にもとづいていないため、自由形式の質問の回答評価には 適していない OpenAI
evals プロジェクト 参加モデルすべてのランキングを提供していない 「Vicuna」の、GPT-4 ベースの評価パイプライン スケーラブルで段階的な評価のためのソリューションを提供していない © dotEQ, Ltd. 3 3
ペアワイズ比較に基づいた 優れたベンチマークシステム クラウドソース方式でユーザに匿名ランダム化バトルを提供する スケーラビリティ(Scalability) ユーザは 2 つの匿名モデルを並べてチャットし、どちらが優れているか投票する 増分性(Incrementality) 投票結果をもとに、Elo レーティングを計算し、モデルの順位を決定する
一意の順序(Unique order) レーティングは各バトル後に、線形に更新される スケーラビリティ(Scalability) 、増分性(Incrementality) © dotEQ, Ltd. 4 4
Collection:評価データの収集 Chatbot Arenaにアクセス ユーザは 2 つの匿名モデルを並べてチャットを開始する ユーザは、匿名モデル 2 つから返答をもらった後、チャットを続けるか、より良いと思 うモデルに投票する
投票が送信されると、モデル名が公開される システムはすべてのユーザーとのやりとりを記録する © dotEQ, Ltd. 5 5
Eval:Elo レーティング チェスやスポーツなどの対戦ゲームで広く用いられているレーティングシステム プレイヤー(LLM)の相対的な強さを計算する方法 複数の LLM 間でペアワイズ比較に基づくバトルの投票から計算する 評価は、モデル名が隠されているときの投票のみを使用する Anthropic LLM
の論文も Elo レーティングシステムを採用している © dotEQ, Ltd. 6 6
LLM の相対的な強さを求める公式 :LLM A のレーティング :LLM B のレーティング :LLM A
が勝つ確率 © dotEQ, Ltd. 7 7
公式の解説 1. レーティング差の計算: で、LLM B と LLM A のレーティング差を計算 この差が大きいほど、レーティングの高い
LLM が勝つ確率が高くなる 2. 指数関数の計算: レーティング差を 400 で割り、底 10 の指数として使用する レーティング差が 400 ポイントごとに勝率が約 10 倍変わることを意味する 3. 勝率の計算: 計算された指数関数の値に 1 を加え、その逆数を取る これにより LLM A が勝つ確率 を得る © dotEQ, Ltd. 8 8
公式の例 例えば、LLM A のレーティングが 1600、LLM B のレーティングが 2000 の場合、計算は以 下のようになる:
1. 2. 3. つまり、この場合 LLM A が勝つ確率は約 9.09% となる © dotEQ, Ltd. 9 9
LLM A が勝つ確率 の更新公式 LLM のレーティングは、各バトルの後に線形に更新できる 仮に LLM A のレーティング
が、勝つ確率 点を獲得すると予想されていたが、実際に は 点を獲得した場合のレーティングを更新式は次のようになる: ・ © dotEQ, Ltd. 10 10
公式の重要なポイントのまとめ レーティング差が大きいほど、高いレーティングの LLM の勝率が高くなる 指数関数により、レーティング差が直線的ではなく、指数的に勝率に影響する 勝率の計算は簡単な逆数の操作で得られる レーティングの更新は線形に行われる この式は、ゲームの結果を予測するために非常に有用であり、容易な更新で、LLM の相対的 な強さの差を定量的に評価できる
© dotEQ, Ltd. 11 11
トーナメントにおける各モデルのペアワイズ勝率 参照:LMSYS Chatbot Arena Leaderboard © dotEQ, Ltd. 12 12
各モデルの組み合わせ対戦回数 ランキングの全体的な網羅性を高めるために、一様サンプリングを使用 終盤に追加された新しいモデルは一様でない結果となっている 参照:LMSYS Chatbot Arena Leaderboard © dotEQ, Ltd.
13 13
モデル強度の信頼区間(via Bootstrapping) 参照:LMSYS Chatbot Arena Leaderboard © dotEQ, Ltd. 14
14
他の全モデルに対する平均勝率 (一様サンプリング、同率なしと仮定した場合) 参照:LMSYS Chatbot Arena Leaderboard © dotEQ, Ltd. 15
15
参考文献 Chatbot Arena: Benchmarking LLMs in the Wild with Elo
Ratings | LMSYS Org Chatbot Arena - Elo を使用した LLM ベンチマーク| npaka We extend our heartfelt thanks to the authors and researchers whose work has been referenced in this presentation. © dotEQ, Ltd. 16 16