OF RECOMMENDATION) ▸ Tutorial for the “Kaggle Titanic Competition” (using R): http://trevorstephens.com/post/72916401642/titanic-getting- started-with-r ▸ Online courses (MOOCs): ▸ Udacity: Intro to Machine Learning: https://www.udacity.com/course/intro-to-machine-learning--ud120 (Excellent intro to applied ML using sci-kit learn and Python) ▸ Coursera: Machine Learning: https://www.coursera.org/learn/machine-learning (Friendly intro to the theory behind common ML algorithm) ▸ Machine Learning Mastery: Lots of self-study guides for ML learners http://machinelearningmastery.com/ ▸ UCI ML Repository: Collection of “Toy problems” for ML http://archive.ics.uci.edu/ml/datasets.html ▸ Toolkits: ▸ Scikit-Learn (Python, great online documentation): http://scikit-learn.org/stable/ ▸ stats package (many simple ML algorithms), pre-installed (R) Examples: http://www.statmethods.net/stats/ regression.html ▸ Book: Abu-Mostafa, Magdon-Ismail, Lin: Learning From Data - A Short Course (AMLbook.com ) (Good intro to more academic perspectives, notation and vocabulary on ML)