Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Kit Introduction (for Android)
Search
Elvis Lin
July 18, 2018
Programming
0
300
ML Kit Introduction (for Android)
Introduce the basic concept of ML Kit and how to use it in Android development
Elvis Lin
July 18, 2018
Tweet
Share
More Decks by Elvis Lin
See All by Elvis Lin
Protect Users' Privacy in iOS 14
elvismetaphor
0
54
Dubugging Tips and Tricks for iOS development
elvismetaphor
0
54
Strategies of Facebook LightSpeed project
elvismetaphor
0
90
Background Execution And WorkManager
elvismetaphor
2
490
作為一個跨平台的 Mobile App 開發者,從入門到放棄!?
elvismetaphor
2
520
Dependency Injection for testability of iOS app
elvismetaphor
1
1.4k
Briefly Introduction of Kotlin coroutines
elvismetaphor
1
310
MotionLayout Brief Introduction
elvismetaphor
1
330
Chapter 10. Pattern Matching with Regular Expressions
elvismetaphor
0
50
Other Decks in Programming
See All in Programming
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
160
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
180
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
39k
Vibe codingでおすすめの言語と開発手法
uyuki234
0
170
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
210
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
340
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
370
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
250
Cap'n Webについて
yusukebe
0
160
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
460
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
2.1k
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
480
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
527
40k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Ruling the World: When Life Gets Gamed
codingconduct
0
120
30 Presentation Tips
portentint
PRO
1
190
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
51k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
51
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
A Soul's Torment
seathinner
4
2.1k
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
150
Transcript
ML Kit 使⽤用簡介 Elvis Lin @Android Taipei 2018-07-18
關於我 • Elvis Lin • Android 與 iOS 永遠的初學者 •
Twitter: @elvismetaphor • Blog: https://blog.elvismetaphor.me
不是業配 https://youtu.be/Z-dqGRSsaBs
⼤大綱 • 什什麼是(我理理解的)機器學習 • 移動裝置上實作機器學習應⽤用的限制 • TensorFlow Lite 與 ML
Kit • 範例例
機器學習的應⽤用
機器學習 • 從資料中歸納出有⽤用的規則 • 訓練模型 • 使⽤用模型 • Mobile Application
Engineer 參參與開發主要是在「使⽤用模型」 這個範圍
Data Result (Trained) Model
移動裝置上 實作機器學習應⽤用的限制 • 記憶體有限與儲存空間有限 • 計算能⼒力力不如⼤大型伺服器 • 電池容量量有限
移動裝置上 實作機器學習應⽤用的改良⽅方向 • 記憶體有限與儲存空間有限 —> 減少模型(Model)的體積 • 計算能⼒力力不如⼤大型伺服器 —> 降低演算法的複雜度
• 電池容量量有限 —> 降低演算法的複雜度
Google 推出的解決⽅方案 • TensorFlow Lite • ML Kit
https://www.tensorflow.org/mobile/tflite/
Neural Networks API Metal
ML Kit • Cloud Vision API / Mobile Vision API
• Tensorflow Lite • 整合 Firebase,託管「客製化的模型」
ML Kit Base APIs • Image labeling • Text recognition
(OCR) • Face detection • Barcode scanning • Landmark detection • others……
使⽤用 ML Kit
建立⼀一個 Firebase 專案
建立⼀一個 Android app 下載設定檔 設定好 Package Name 下載 google-service.json
<root>/build.gradle dependencies { classpath 'com.android.tools.build:gradle:3.1.3' classpath 'com.google.gms:google-services:4.0.2' }
<root>/app/build.gradle dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:16.0.0' }
掃描 barcode (local) FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(image); FirebaseVisionBarcodeDetectorOptions options =
new FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC ) .build(); FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() .getVisionBarcodeDetector(options); detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode> barcodes) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
初始化 Detector FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(image); FirebaseVisionBarcodeDetectorOptions options = new
FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC ) .build(); FirebaseVisionBarcodeDetector detector = FirebaseVision .getInstance() .getVisionBarcodeDetector(options);
取得結果 detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode>
barcodes) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
⽀支援的 barcode 格式 • Code 128 (FORMAT_CODE_128) • Code 39
(FORMAT_CODE_39) • Code 93 (FORMAT_CODE_93) • Codabar (FORMAT_CODABAR) • EAN-13 (FORMAT_EAN_13) • EAN-8 (FORMAT_EAN_8) • ITF (FORMAT_ITF) • UPC-A (FORMAT_UPC_A) • UPC-E (FORMAT_UPC_E) •QR Code (FORMAT_QR_CODE) • PDF417 (FORMAT_PDF417) • Aztec (FORMAT_AZTEC) • Data Matrix (FORMAT_DATA_MATRIX)
辨識⽂文字 (local) FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(selectedImage); FirebaseVisionTextDetector detector = FirebaseVision.getInstance().getVisionTextDetector();
detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText text) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
辨識⽂文字 (cloud) FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(selectedImage); FirebaseVisionCloudDocumentTextDetector detector = FirebaseVision.getInstance() .getVisionCloudDocumentTextDetector(options); detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionCloudText>() { @Override public void onSuccess(FirebaseVisionCloudText text) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
補充資料 • ML Kit 簡介 (for Android) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- android-6444e2db0fdb •
ML Kit 簡介 (for iOS) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- ios-cb705044e69b
參參考資料 • https://youtu.be/Z-dqGRSsaBs • https://codelabs.developers.google.com/codelabs/mlkit- android/ • https://github.com/firebase/quickstart-android/tree/ master/mlkit
None