Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Kit Introduction (for Android)
Search
Elvis Lin
July 18, 2018
Programming
0
290
ML Kit Introduction (for Android)
Introduce the basic concept of ML Kit and how to use it in Android development
Elvis Lin
July 18, 2018
Tweet
Share
More Decks by Elvis Lin
See All by Elvis Lin
Protect Users' Privacy in iOS 14
elvismetaphor
0
51
Dubugging Tips and Tricks for iOS development
elvismetaphor
0
51
Strategies of Facebook LightSpeed project
elvismetaphor
0
82
Background Execution And WorkManager
elvismetaphor
2
480
作為一個跨平台的 Mobile App 開發者,從入門到放棄!?
elvismetaphor
2
510
Dependency Injection for testability of iOS app
elvismetaphor
1
1.4k
Briefly Introduction of Kotlin coroutines
elvismetaphor
1
290
MotionLayout Brief Introduction
elvismetaphor
1
330
Chapter 10. Pattern Matching with Regular Expressions
elvismetaphor
0
47
Other Decks in Programming
See All in Programming
decksh - a little language for decks
ajstarks
4
21k
大規模FlutterプロジェクトのCI実行時間を約8割削減した話
teamlab
PRO
0
480
コーディングは技術者(エンジニア)の嗜みでして / Learning the System Development Mindset from Rock Lady
mackey0225
2
500
Webinar: AI-Powered Development: Transformiere deinen Workflow mit Coding Tools und MCP Servern
danielsogl
0
130
新しいモバイルアプリ勉強会(仮)について
uetyo
1
260
技術的負債で信頼性が限界だったWordPress運用をShifterで完全復活させた話
rvirus0817
1
1.8k
대규모 트래픽을 처리하는 프론트 개발자의 전략
maryang
0
120
Amazon Q CLI開発で学んだAIコーディングツールの使い方
licux
3
180
AI時代のドメイン駆動設計-DDD実践におけるAI活用のあり方 / ddd-in-ai-era
minodriven
21
8k
Nuances on Kubernetes - RubyConf Taiwan 2025
envek
0
170
画像コンペでのベースラインモデルの育て方
tattaka
3
1.7k
フロントエンドのmonorepo化と責務分離のリアーキテクト
kajitack
2
110
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.6k
For a Future-Friendly Web
brad_frost
179
9.9k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Practical Orchestrator
shlominoach
190
11k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
The Pragmatic Product Professional
lauravandoore
36
6.8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
How to Think Like a Performance Engineer
csswizardry
25
1.8k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Making Projects Easy
brettharned
117
6.3k
Transcript
ML Kit 使⽤用簡介 Elvis Lin @Android Taipei 2018-07-18
關於我 • Elvis Lin • Android 與 iOS 永遠的初學者 •
Twitter: @elvismetaphor • Blog: https://blog.elvismetaphor.me
不是業配 https://youtu.be/Z-dqGRSsaBs
⼤大綱 • 什什麼是(我理理解的)機器學習 • 移動裝置上實作機器學習應⽤用的限制 • TensorFlow Lite 與 ML
Kit • 範例例
機器學習的應⽤用
機器學習 • 從資料中歸納出有⽤用的規則 • 訓練模型 • 使⽤用模型 • Mobile Application
Engineer 參參與開發主要是在「使⽤用模型」 這個範圍
Data Result (Trained) Model
移動裝置上 實作機器學習應⽤用的限制 • 記憶體有限與儲存空間有限 • 計算能⼒力力不如⼤大型伺服器 • 電池容量量有限
移動裝置上 實作機器學習應⽤用的改良⽅方向 • 記憶體有限與儲存空間有限 —> 減少模型(Model)的體積 • 計算能⼒力力不如⼤大型伺服器 —> 降低演算法的複雜度
• 電池容量量有限 —> 降低演算法的複雜度
Google 推出的解決⽅方案 • TensorFlow Lite • ML Kit
https://www.tensorflow.org/mobile/tflite/
Neural Networks API Metal
ML Kit • Cloud Vision API / Mobile Vision API
• Tensorflow Lite • 整合 Firebase,託管「客製化的模型」
ML Kit Base APIs • Image labeling • Text recognition
(OCR) • Face detection • Barcode scanning • Landmark detection • others……
使⽤用 ML Kit
建立⼀一個 Firebase 專案
建立⼀一個 Android app 下載設定檔 設定好 Package Name 下載 google-service.json
<root>/build.gradle dependencies { classpath 'com.android.tools.build:gradle:3.1.3' classpath 'com.google.gms:google-services:4.0.2' }
<root>/app/build.gradle dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:16.0.0' }
掃描 barcode (local) FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(image); FirebaseVisionBarcodeDetectorOptions options =
new FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC ) .build(); FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() .getVisionBarcodeDetector(options); detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode> barcodes) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
初始化 Detector FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(image); FirebaseVisionBarcodeDetectorOptions options = new
FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC ) .build(); FirebaseVisionBarcodeDetector detector = FirebaseVision .getInstance() .getVisionBarcodeDetector(options);
取得結果 detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode>
barcodes) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
⽀支援的 barcode 格式 • Code 128 (FORMAT_CODE_128) • Code 39
(FORMAT_CODE_39) • Code 93 (FORMAT_CODE_93) • Codabar (FORMAT_CODABAR) • EAN-13 (FORMAT_EAN_13) • EAN-8 (FORMAT_EAN_8) • ITF (FORMAT_ITF) • UPC-A (FORMAT_UPC_A) • UPC-E (FORMAT_UPC_E) •QR Code (FORMAT_QR_CODE) • PDF417 (FORMAT_PDF417) • Aztec (FORMAT_AZTEC) • Data Matrix (FORMAT_DATA_MATRIX)
辨識⽂文字 (local) FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(selectedImage); FirebaseVisionTextDetector detector = FirebaseVision.getInstance().getVisionTextDetector();
detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText text) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
辨識⽂文字 (cloud) FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(selectedImage); FirebaseVisionCloudDocumentTextDetector detector = FirebaseVision.getInstance() .getVisionCloudDocumentTextDetector(options); detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionCloudText>() { @Override public void onSuccess(FirebaseVisionCloudText text) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
補充資料 • ML Kit 簡介 (for Android) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- android-6444e2db0fdb •
ML Kit 簡介 (for iOS) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- ios-cb705044e69b
參參考資料 • https://youtu.be/Z-dqGRSsaBs • https://codelabs.developers.google.com/codelabs/mlkit- android/ • https://github.com/firebase/quickstart-android/tree/ master/mlkit
None