Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Kit Introduction (for Android)
Search
Elvis Lin
July 18, 2018
Programming
0
290
ML Kit Introduction (for Android)
Introduce the basic concept of ML Kit and how to use it in Android development
Elvis Lin
July 18, 2018
Tweet
Share
More Decks by Elvis Lin
See All by Elvis Lin
Protect Users' Privacy in iOS 14
elvismetaphor
0
49
Dubugging Tips and Tricks for iOS development
elvismetaphor
0
50
Strategies of Facebook LightSpeed project
elvismetaphor
0
77
Background Execution And WorkManager
elvismetaphor
2
480
作為一個跨平台的 Mobile App 開發者,從入門到放棄!?
elvismetaphor
2
500
Dependency Injection for testability of iOS app
elvismetaphor
1
1.4k
Briefly Introduction of Kotlin coroutines
elvismetaphor
1
280
MotionLayout Brief Introduction
elvismetaphor
1
330
Chapter 10. Pattern Matching with Regular Expressions
elvismetaphor
0
46
Other Decks in Programming
See All in Programming
『自分のデータだけ見せたい!』を叶える──Laravel × Casbin で複雑権限をスッキリ解きほぐす 25 分
akitotsukahara
2
610
PHPで始める振る舞い駆動開発(Behaviour-Driven Development)
ohmori_yusuke
2
250
Deep Dive into ~/.claude/projects
hiragram
11
2.3k
20250628_非エンジニアがバイブコーディングしてみた
ponponmikankan
0
640
ruby.wasmで多人数リアルタイム通信ゲームを作ろう
lnit
3
350
Modern Angular with Signals and Signal Store:New Rules for Your Architecture @enterJS Advanced Angular Day 2025
manfredsteyer
PRO
0
180
PHPでWebSocketサーバーを実装しよう2025
kubotak
0
260
Composerが「依存解決」のためにどんな工夫をしているか #phpcon
o0h
PRO
1
250
0626 Findy Product Manager LT Night_高田スライド_speaker deck用
mana_takada
0
140
生成AIコーディングとの向き合い方、AIと共創するという考え方 / How to deal with generative AI coding and the concept of co-creating with AI
seike460
PRO
1
350
PipeCDのプラグイン化で目指すところ
warashi
1
250
NPOでのDevinの活用
codeforeveryone
0
720
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Designing for Performance
lara
609
69k
Building an army of robots
kneath
306
45k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
17
950
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.8k
Bash Introduction
62gerente
614
210k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
810
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
What's in a price? How to price your products and services
michaelherold
246
12k
Transcript
ML Kit 使⽤用簡介 Elvis Lin @Android Taipei 2018-07-18
關於我 • Elvis Lin • Android 與 iOS 永遠的初學者 •
Twitter: @elvismetaphor • Blog: https://blog.elvismetaphor.me
不是業配 https://youtu.be/Z-dqGRSsaBs
⼤大綱 • 什什麼是(我理理解的)機器學習 • 移動裝置上實作機器學習應⽤用的限制 • TensorFlow Lite 與 ML
Kit • 範例例
機器學習的應⽤用
機器學習 • 從資料中歸納出有⽤用的規則 • 訓練模型 • 使⽤用模型 • Mobile Application
Engineer 參參與開發主要是在「使⽤用模型」 這個範圍
Data Result (Trained) Model
移動裝置上 實作機器學習應⽤用的限制 • 記憶體有限與儲存空間有限 • 計算能⼒力力不如⼤大型伺服器 • 電池容量量有限
移動裝置上 實作機器學習應⽤用的改良⽅方向 • 記憶體有限與儲存空間有限 —> 減少模型(Model)的體積 • 計算能⼒力力不如⼤大型伺服器 —> 降低演算法的複雜度
• 電池容量量有限 —> 降低演算法的複雜度
Google 推出的解決⽅方案 • TensorFlow Lite • ML Kit
https://www.tensorflow.org/mobile/tflite/
Neural Networks API Metal
ML Kit • Cloud Vision API / Mobile Vision API
• Tensorflow Lite • 整合 Firebase,託管「客製化的模型」
ML Kit Base APIs • Image labeling • Text recognition
(OCR) • Face detection • Barcode scanning • Landmark detection • others……
使⽤用 ML Kit
建立⼀一個 Firebase 專案
建立⼀一個 Android app 下載設定檔 設定好 Package Name 下載 google-service.json
<root>/build.gradle dependencies { classpath 'com.android.tools.build:gradle:3.1.3' classpath 'com.google.gms:google-services:4.0.2' }
<root>/app/build.gradle dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:16.0.0' }
掃描 barcode (local) FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(image); FirebaseVisionBarcodeDetectorOptions options =
new FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC ) .build(); FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() .getVisionBarcodeDetector(options); detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode> barcodes) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
初始化 Detector FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(image); FirebaseVisionBarcodeDetectorOptions options = new
FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC ) .build(); FirebaseVisionBarcodeDetector detector = FirebaseVision .getInstance() .getVisionBarcodeDetector(options);
取得結果 detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode>
barcodes) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
⽀支援的 barcode 格式 • Code 128 (FORMAT_CODE_128) • Code 39
(FORMAT_CODE_39) • Code 93 (FORMAT_CODE_93) • Codabar (FORMAT_CODABAR) • EAN-13 (FORMAT_EAN_13) • EAN-8 (FORMAT_EAN_8) • ITF (FORMAT_ITF) • UPC-A (FORMAT_UPC_A) • UPC-E (FORMAT_UPC_E) •QR Code (FORMAT_QR_CODE) • PDF417 (FORMAT_PDF417) • Aztec (FORMAT_AZTEC) • Data Matrix (FORMAT_DATA_MATRIX)
辨識⽂文字 (local) FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(selectedImage); FirebaseVisionTextDetector detector = FirebaseVision.getInstance().getVisionTextDetector();
detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText text) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
辨識⽂文字 (cloud) FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(selectedImage); FirebaseVisionCloudDocumentTextDetector detector = FirebaseVision.getInstance() .getVisionCloudDocumentTextDetector(options); detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionCloudText>() { @Override public void onSuccess(FirebaseVisionCloudText text) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
補充資料 • ML Kit 簡介 (for Android) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- android-6444e2db0fdb •
ML Kit 簡介 (for iOS) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- ios-cb705044e69b
參參考資料 • https://youtu.be/Z-dqGRSsaBs • https://codelabs.developers.google.com/codelabs/mlkit- android/ • https://github.com/firebase/quickstart-android/tree/ master/mlkit
None