Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Kit Introduction (for Android)
Search
Elvis Lin
July 18, 2018
Programming
0
290
ML Kit Introduction (for Android)
Introduce the basic concept of ML Kit and how to use it in Android development
Elvis Lin
July 18, 2018
Tweet
Share
More Decks by Elvis Lin
See All by Elvis Lin
Protect Users' Privacy in iOS 14
elvismetaphor
0
46
Dubugging Tips and Tricks for iOS development
elvismetaphor
0
50
Strategies of Facebook LightSpeed project
elvismetaphor
0
70
Background Execution And WorkManager
elvismetaphor
2
480
作為一個跨平台的 Mobile App 開發者,從入門到放棄!?
elvismetaphor
2
500
Dependency Injection for testability of iOS app
elvismetaphor
1
1.4k
Briefly Introduction of Kotlin coroutines
elvismetaphor
1
280
MotionLayout Brief Introduction
elvismetaphor
1
320
Chapter 10. Pattern Matching with Regular Expressions
elvismetaphor
0
42
Other Decks in Programming
See All in Programming
コンポーネントライブラリで実現する、アクセシビリティの正しい実装パターン
schktjm
1
670
複雑なフォームを継続的に開発していくための技術選定・設計・実装 #tskaigi / #tskaigi2025
izumin5210
12
6.4k
從零到一:搭建你的第一個 Observability 平台
blueswen
0
220
型付け力を強化するための Hoogle のすゝめ / Boosting Your Type Mastery with Hoogle
guvalif
1
230
がんばりすぎないコーディングルール運用術
tsukakei
1
180
DevTalks 25 - Create your own AI-infused Java apps with ease
kdubois
2
120
Building an Application with TDD, DDD and Hexagonal Architecture - Isn't it a bit too much?
mufrid
0
370
テスト分析入門/Test Analysis Tutorial
goyoki
12
2.7k
AI Coding Agent Enablement in TypeScript
yukukotani
17
7.2k
【TSkaigi 2025】これは型破り?型安全? 真実はいつもひとつ!(じゃないかもしれない)TypeScript クイズ〜〜〜〜!!!!!
kimitashoichi
1
300
eBPFを用いたAIネットワーク監視システム論文の実装 / eBPF Japan Meetup #4
yuukit
3
620
衛星の軌道をWeb地図上に表示する
sankichi92
0
250
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Raft: Consensus for Rubyists
vanstee
137
7k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Site-Speed That Sticks
csswizardry
7
590
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
How GitHub (no longer) Works
holman
314
140k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Music & Morning Musume
bryan
47
6.6k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.4k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
14
1.5k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Transcript
ML Kit 使⽤用簡介 Elvis Lin @Android Taipei 2018-07-18
關於我 • Elvis Lin • Android 與 iOS 永遠的初學者 •
Twitter: @elvismetaphor • Blog: https://blog.elvismetaphor.me
不是業配 https://youtu.be/Z-dqGRSsaBs
⼤大綱 • 什什麼是(我理理解的)機器學習 • 移動裝置上實作機器學習應⽤用的限制 • TensorFlow Lite 與 ML
Kit • 範例例
機器學習的應⽤用
機器學習 • 從資料中歸納出有⽤用的規則 • 訓練模型 • 使⽤用模型 • Mobile Application
Engineer 參參與開發主要是在「使⽤用模型」 這個範圍
Data Result (Trained) Model
移動裝置上 實作機器學習應⽤用的限制 • 記憶體有限與儲存空間有限 • 計算能⼒力力不如⼤大型伺服器 • 電池容量量有限
移動裝置上 實作機器學習應⽤用的改良⽅方向 • 記憶體有限與儲存空間有限 —> 減少模型(Model)的體積 • 計算能⼒力力不如⼤大型伺服器 —> 降低演算法的複雜度
• 電池容量量有限 —> 降低演算法的複雜度
Google 推出的解決⽅方案 • TensorFlow Lite • ML Kit
https://www.tensorflow.org/mobile/tflite/
Neural Networks API Metal
ML Kit • Cloud Vision API / Mobile Vision API
• Tensorflow Lite • 整合 Firebase,託管「客製化的模型」
ML Kit Base APIs • Image labeling • Text recognition
(OCR) • Face detection • Barcode scanning • Landmark detection • others……
使⽤用 ML Kit
建立⼀一個 Firebase 專案
建立⼀一個 Android app 下載設定檔 設定好 Package Name 下載 google-service.json
<root>/build.gradle dependencies { classpath 'com.android.tools.build:gradle:3.1.3' classpath 'com.google.gms:google-services:4.0.2' }
<root>/app/build.gradle dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:16.0.0' }
掃描 barcode (local) FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(image); FirebaseVisionBarcodeDetectorOptions options =
new FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC ) .build(); FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() .getVisionBarcodeDetector(options); detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode> barcodes) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
初始化 Detector FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(image); FirebaseVisionBarcodeDetectorOptions options = new
FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC ) .build(); FirebaseVisionBarcodeDetector detector = FirebaseVision .getInstance() .getVisionBarcodeDetector(options);
取得結果 detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode>
barcodes) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
⽀支援的 barcode 格式 • Code 128 (FORMAT_CODE_128) • Code 39
(FORMAT_CODE_39) • Code 93 (FORMAT_CODE_93) • Codabar (FORMAT_CODABAR) • EAN-13 (FORMAT_EAN_13) • EAN-8 (FORMAT_EAN_8) • ITF (FORMAT_ITF) • UPC-A (FORMAT_UPC_A) • UPC-E (FORMAT_UPC_E) •QR Code (FORMAT_QR_CODE) • PDF417 (FORMAT_PDF417) • Aztec (FORMAT_AZTEC) • Data Matrix (FORMAT_DATA_MATRIX)
辨識⽂文字 (local) FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(selectedImage); FirebaseVisionTextDetector detector = FirebaseVision.getInstance().getVisionTextDetector();
detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText text) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
辨識⽂文字 (cloud) FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(selectedImage); FirebaseVisionCloudDocumentTextDetector detector = FirebaseVision.getInstance() .getVisionCloudDocumentTextDetector(options); detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionCloudText>() { @Override public void onSuccess(FirebaseVisionCloudText text) {} }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) {} });
補充資料 • ML Kit 簡介 (for Android) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- android-6444e2db0fdb •
ML Kit 簡介 (for iOS) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- ios-cb705044e69b
參參考資料 • https://youtu.be/Z-dqGRSsaBs • https://codelabs.developers.google.com/codelabs/mlkit- android/ • https://github.com/firebase/quickstart-android/tree/ master/mlkit
None