Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
はじめてのドラッカー風エクササイズ/first-Drucker-style-exercise
Search
Yuki Fukuma
November 22, 2019
Technology
0
2.8k
はじめてのドラッカー風エクササイズ/first-Drucker-style-exercise
オクト社での社内ランチLTで紹介した登壇資料です。
Yuki Fukuma
November 22, 2019
Tweet
Share
More Decks by Yuki Fukuma
See All by Yuki Fukuma
テーブル定義変更のレビューを効率化するための仕組み作り / DBRE Summit 2023
fkmy
5
2k
マイナビ学生の窓口-半内製化の取り組み/Semi-in-house Development Efforts
fkmy
1
960
Other Decks in Technology
See All in Technology
Vivre en Bitcoin : le tutoriel que votre banquier ne veut pas que vous voyiez
rlifchitz
0
340
たかがボタン、されどボタン ~button要素から深ぼるボタンUIの定義について~ / BuriKaigi 2026
yamanoku
1
290
Data Hubグループ 紹介資料
sansan33
PRO
0
2.6k
Exadata Database Service ソフトウェアのアップデートとアップグレードの概要
oracle4engineer
PRO
1
1.2k
ファシリテーション勉強中 その場に何が求められるかを考えるようになるまで / 20260123 Naoki Takahashi
shift_evolve
PRO
0
120
みんなでAI上手ピーポーになろう! / Let’s All Get AI-Savvy!
kaminashi
0
170
旬のブリと旬の技術で楽しむ AI エージェント設計開発レシピ
chack411
1
300
20260120 Amazon VPC のパブリックサブネットを無くしたい!
masaruogura
2
140
Agentic Coding 実践ワークショップ
watany
20
16k
アウトプットはいいぞ / output_iizo
uhooi
0
140
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
340
AI Agent Standards and Protocols: a Walkthrough of MCP, A2A, and more...
glaforge
0
450
Featured
See All Featured
The Invisible Side of Design
smashingmag
302
51k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
800
KATA
mclloyd
PRO
33
15k
Crafting Experiences
bethany
1
34
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
The SEO identity crisis: Don't let AI make you average
varn
0
55
How GitHub (no longer) Works
holman
316
140k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Accessibility Awareness
sabderemane
0
38
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
49
Transcript
はじめての ドラッカー⾵エクササイズ Yuki Fukuma @fkm_y #オクト ランチLT 2019.12.10
Yuki Fukuma @fkm_y ೖࣾ αʔόαΠυΤϯδχΞ 3VCZ3VCZPO3BJMT
࠷ۙͷ৬ʹ͍ͭͯ ݒਨͰ͖Δ৬͍͍ͧ
- ドラッカー⾵エクササイズとは - 初ドラッカー⾵エクササイズで感じた疑問 - タックマンモデルについて - 組み合わせて考えてみる 今⽇話すこと
ドラッカー⾵エクササイズとは 書籍「アジャイルサムライ」などで紹介されている チームビルディングの⼿法。 4つの質問の答えをチームで共有することにより 相互理解、期待のすり合わせをする。
ワークショップの準備物(例) • ペンと付箋 • ホワイトボード • タイマー ドラッカー⾵エクササイズとは
ワークショップのスケジュール(例) • 事前説明 :3分 • ⽬的の確認:2分 • 回答の記⼊:10分 • 回答の発表:~5分/1⼈ •
結果の確認:5分 ドラッカー⾵エクササイズとは
ドラッカー⾵エクササイズとは 4つの質問 • ⾃分は何が得意なのか? • ⾃分はどうやって貢献するつもりか? • ⾃分が⼤切に思う価値は何か? • チームメンバーは⾃分にどんな成果を期待してると思うか?
None
ドラッカー⾵エクササイズとは? 4つの質問 • ⾃分は何が得意なのか? • ⾃分はどうやって貢献するつもりか? • ⾃分が⼤切に思う価値は何か? • チームメンバーは⾃分にどんな成果を期待してると思うか?
初ドラッカー⾵エクササイズで感じた疑問 チームメンバーは⾃分にどんな成果を期待してると思うか? ※ほぼ初対⾯の状態で実施した場合 相互理解できていない状態で 期待は答えられないのでは?
None
初ドラッカー⾵エクササイズで感じた疑問 IUUQTCBDLMPHDPNKBCMPHESVDLFSFYFSDJTFNFFUTUVDLNBONPEFM
タックマンモデルについて ϑΣʔζ ֓ཁ ࣮ݱ͍ͨ͠ࣄ ܗظ ɾ͓ޓ͍ͷࣄΛΒͳ͍ ɾڞ௨ͷతΘ͔Βͳ͍ ɾ૬ޓཧղ ࠞཚظ ɾతɺ֤ࣗͷׂɺ
ɹʹ͍ͭͯରཱ͕ੜ·ΕΔ ɾظͷ͢Γ߹Θͤ ౷Ұظ ɾνʔϜͷతۀͷతɺ֤ࣗͷׂ͕ ɹ౷Ұڞ༗͞Ε͍ͯΔঢ়ଶ ػೳظ ɾνʔϜʹ݁ଋྗ࿈ಈੑ͕ੜ·Ε૬ޓʹ ɹαϙʔτ͕ग़དྷΔঢ়ଶ
形成期、混乱期の実現したいことごとに質問を分解してみる 組み合わせて考えてみる 相互理解と期待のすり合わせ 4つの質問 • ⾃分は何が得意なのか? • ⾃分はどうやって貢献するつもりか? • ⾃分が⼤切に思う価値は何か?
• チームメンバーは⾃分にどんな成果を期待してると思うか?
None
何か前提が抜けてるような?
None
相互理解と期待のすり合わせは 何のためにするんだろう?
None
当たり前すぎて忘れがちだけど プロジェクトを進めるため
4つの質問 • ⾃分は何が得意なのか? • ⾃分はどうやって貢献するつもりか? • ⾃分が⼤切に思う価値は何か? • チームメンバーは⾃分にどんな成果を期待してると思うか? 組み合わせて考えてみる
プロジェクトを進めるための 相互理解と期待のすり合わせ
カスタマイズしたドラエク例 1回⽬:形成期 ⽬的:メンバーの相互理解(⾃分を知ってもらう) 質問: ・⾃分は何が得意なのか? ・⾃分が120%頑張っちゃうこと ・チームの中での役割 ・どういうふうに仕事をするのか? ・どういう状態でパフォーマンスを発揮するか? ・ここだけは駄⽬なポイント?
・⾃分が⼤切に思う価値は何か?
カスタマイズしたドラエク例 2回⽬:混乱期 ⽬的:期待のすり合わせ いつ:1回⽬から1~2週間後 質問: ・どういうふうに仕事をするのか? ・⾃分が⼤切に思う価値は何か? ・⾃分はどうやってこのPJに貢献するつもりか? ・このPJでチームメンバーは⾃分にどんな成果を期待してると 思うか?
・このPJで⾃分はチームメンバーにどんな成果を期待するか?
まとめ ・チームビルディング⼿法にドラッカー⾵エクササイズがある ・ドラッカー⾵エクササイズによりメンバーの相互理解、 期待のすり合わせが促進される ・タックマンモデルを元にフェーズの課題に対した カスタマイズ版ドラッカー⾵エクササイズにより より丁寧にチームビルディングできるかもしれない
参考図書 / 参考記事 ࢀߟਤॻ ɾΞδϟΠϧαϜϥΠ ɾΧΠθϯɾδϟʔχʔ ɾίʔνϯάͷجຊ ࢀߟهࣄ ɾνʔϜϝϯόʔͷظΛ͋ΘͤΔʮυϥοΧʔ෩ΤΫααΠζʯ |
DevTab - ͚ͭͮ͠ ΔσϕϩούʔͷͨΊͷใλϒϩΠυ ɾʮυϥοΧʔ෩ΤΫααΠζʯͰظΛ͢Γ͋Θͤͯ҆શͳνʔϜʹ - ϖύϘςοΫϒϩά ɾνʔϜͷظΛ߹ΘͤΔʂυϥοΧʔ෩ΤΫααΠζͱλοΫϚϯϞσϧΛΈ߹Θͤͨ݁ Ռ | Backlogϒϩά