Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
はじめてのドラッカー風エクササイズ/first-Drucker-style-exercise
Search
Yuki Fukuma
November 22, 2019
Technology
0
2.8k
はじめてのドラッカー風エクササイズ/first-Drucker-style-exercise
オクト社での社内ランチLTで紹介した登壇資料です。
Yuki Fukuma
November 22, 2019
Tweet
Share
More Decks by Yuki Fukuma
See All by Yuki Fukuma
テーブル定義変更のレビューを効率化するための仕組み作り / DBRE Summit 2023
fkmy
5
1.9k
マイナビ学生の窓口-半内製化の取り組み/Semi-in-house Development Efforts
fkmy
1
950
Other Decks in Technology
See All in Technology
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
210
AI活用によるPRレビュー改善の歩み ― 社内全体に広がる学びと実践
lycorptech_jp
PRO
1
190
生成AI時代の自動E2Eテスト運用とPlaywright実践知_引持力哉
legalontechnologies
PRO
0
210
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
210
Uncertainty in the LLM era - Science, more than scale
gaelvaroquaux
0
810
最近のLinux普段づかいWaylandデスクトップ元年
penguin2716
1
670
Microsoft Agent 365 を 30 分でなんとなく理解する
skmkzyk
1
1k
AI時代におけるアジャイル開発について
polyscape_inc
0
130
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
730
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
1
160
意外とあった SQL Server 関連アップデート + Database Savings Plans
stknohg
PRO
0
290
[CMU-DB-2025FALL] Apache Fluss - A Streaming Storage for Real-Time Lakehouse
jark
0
110
Featured
See All Featured
It's Worth the Effort
3n
187
29k
Being A Developer After 40
akosma
91
590k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.8k
How to train your dragon (web standard)
notwaldorf
97
6.4k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Docker and Python
trallard
47
3.7k
Designing for Performance
lara
610
69k
Producing Creativity
orderedlist
PRO
348
40k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Transcript
はじめての ドラッカー⾵エクササイズ Yuki Fukuma @fkm_y #オクト ランチLT 2019.12.10
Yuki Fukuma @fkm_y ೖࣾ αʔόαΠυΤϯδχΞ 3VCZ3VCZPO3BJMT
࠷ۙͷ৬ʹ͍ͭͯ ݒਨͰ͖Δ৬͍͍ͧ
- ドラッカー⾵エクササイズとは - 初ドラッカー⾵エクササイズで感じた疑問 - タックマンモデルについて - 組み合わせて考えてみる 今⽇話すこと
ドラッカー⾵エクササイズとは 書籍「アジャイルサムライ」などで紹介されている チームビルディングの⼿法。 4つの質問の答えをチームで共有することにより 相互理解、期待のすり合わせをする。
ワークショップの準備物(例) • ペンと付箋 • ホワイトボード • タイマー ドラッカー⾵エクササイズとは
ワークショップのスケジュール(例) • 事前説明 :3分 • ⽬的の確認:2分 • 回答の記⼊:10分 • 回答の発表:~5分/1⼈ •
結果の確認:5分 ドラッカー⾵エクササイズとは
ドラッカー⾵エクササイズとは 4つの質問 • ⾃分は何が得意なのか? • ⾃分はどうやって貢献するつもりか? • ⾃分が⼤切に思う価値は何か? • チームメンバーは⾃分にどんな成果を期待してると思うか?
None
ドラッカー⾵エクササイズとは? 4つの質問 • ⾃分は何が得意なのか? • ⾃分はどうやって貢献するつもりか? • ⾃分が⼤切に思う価値は何か? • チームメンバーは⾃分にどんな成果を期待してると思うか?
初ドラッカー⾵エクササイズで感じた疑問 チームメンバーは⾃分にどんな成果を期待してると思うか? ※ほぼ初対⾯の状態で実施した場合 相互理解できていない状態で 期待は答えられないのでは?
None
初ドラッカー⾵エクササイズで感じた疑問 IUUQTCBDLMPHDPNKBCMPHESVDLFSFYFSDJTFNFFUTUVDLNBONPEFM
タックマンモデルについて ϑΣʔζ ֓ཁ ࣮ݱ͍ͨ͠ࣄ ܗظ ɾ͓ޓ͍ͷࣄΛΒͳ͍ ɾڞ௨ͷతΘ͔Βͳ͍ ɾ૬ޓཧղ ࠞཚظ ɾతɺ֤ࣗͷׂɺ
ɹʹ͍ͭͯରཱ͕ੜ·ΕΔ ɾظͷ͢Γ߹Θͤ ౷Ұظ ɾνʔϜͷతۀͷతɺ֤ࣗͷׂ͕ ɹ౷Ұڞ༗͞Ε͍ͯΔঢ়ଶ ػೳظ ɾνʔϜʹ݁ଋྗ࿈ಈੑ͕ੜ·Ε૬ޓʹ ɹαϙʔτ͕ग़དྷΔঢ়ଶ
形成期、混乱期の実現したいことごとに質問を分解してみる 組み合わせて考えてみる 相互理解と期待のすり合わせ 4つの質問 • ⾃分は何が得意なのか? • ⾃分はどうやって貢献するつもりか? • ⾃分が⼤切に思う価値は何か?
• チームメンバーは⾃分にどんな成果を期待してると思うか?
None
何か前提が抜けてるような?
None
相互理解と期待のすり合わせは 何のためにするんだろう?
None
当たり前すぎて忘れがちだけど プロジェクトを進めるため
4つの質問 • ⾃分は何が得意なのか? • ⾃分はどうやって貢献するつもりか? • ⾃分が⼤切に思う価値は何か? • チームメンバーは⾃分にどんな成果を期待してると思うか? 組み合わせて考えてみる
プロジェクトを進めるための 相互理解と期待のすり合わせ
カスタマイズしたドラエク例 1回⽬:形成期 ⽬的:メンバーの相互理解(⾃分を知ってもらう) 質問: ・⾃分は何が得意なのか? ・⾃分が120%頑張っちゃうこと ・チームの中での役割 ・どういうふうに仕事をするのか? ・どういう状態でパフォーマンスを発揮するか? ・ここだけは駄⽬なポイント?
・⾃分が⼤切に思う価値は何か?
カスタマイズしたドラエク例 2回⽬:混乱期 ⽬的:期待のすり合わせ いつ:1回⽬から1~2週間後 質問: ・どういうふうに仕事をするのか? ・⾃分が⼤切に思う価値は何か? ・⾃分はどうやってこのPJに貢献するつもりか? ・このPJでチームメンバーは⾃分にどんな成果を期待してると 思うか?
・このPJで⾃分はチームメンバーにどんな成果を期待するか?
まとめ ・チームビルディング⼿法にドラッカー⾵エクササイズがある ・ドラッカー⾵エクササイズによりメンバーの相互理解、 期待のすり合わせが促進される ・タックマンモデルを元にフェーズの課題に対した カスタマイズ版ドラッカー⾵エクササイズにより より丁寧にチームビルディングできるかもしれない
参考図書 / 参考記事 ࢀߟਤॻ ɾΞδϟΠϧαϜϥΠ ɾΧΠθϯɾδϟʔχʔ ɾίʔνϯάͷجຊ ࢀߟهࣄ ɾνʔϜϝϯόʔͷظΛ͋ΘͤΔʮυϥοΧʔ෩ΤΫααΠζʯ |
DevTab - ͚ͭͮ͠ ΔσϕϩούʔͷͨΊͷใλϒϩΠυ ɾʮυϥοΧʔ෩ΤΫααΠζʯͰظΛ͢Γ͋Θͤͯ҆શͳνʔϜʹ - ϖύϘςοΫϒϩά ɾνʔϜͷظΛ߹ΘͤΔʂυϥοΧʔ෩ΤΫααΠζͱλοΫϚϯϞσϧΛΈ߹Θͤͨ݁ Ռ | Backlogϒϩά