and Challenges of Low-Inertia Systems (Invited Paper) Federico Milano University College Dublin, Ireland email:
[email protected] Florian D¨ orfler and Gabriela Hug ETH Z¨ urich, Switzerland emails: dorfl
[email protected],
[email protected] David J. Hill∗ and Gregor Verbiˇ c University of Sydney, Australia ∗ also University of Hong Kong emails:
[email protected],
[email protected] • New models are needed which balance the need to include key features without burdening the model (whether for analytical or computational work) with uneven and excessive detail; • New stability theory which properly reflects the new devices and time-scales associated with CIG, new loads and use of storage; • Further computational work to achieve sensitivity guidelines including data-based approaches; • New control methodologies, e.g. new controller to mitigate the high rate of change of frequency in low inertia systems; • A power converter is a fully actuated, modular, and very fast control system, which are nearly antipodal characteristics to those of a synchronous machine. Thus, one should critically reflect the control of a converter as a virtual synchronous machine; and • The lack of inertia in a power system does not need to (and cannot) be fixed by simply “adding inertia back” in the systems. The later sections contain many suggestions for further work, which can be summarized as follows: Annual Review of Control, Robotics, and Autonomous Systems Control of Low-Inertia Power Systems Florian Dörfler1 and Dominic Groß2 1Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland; email: dorfl
[email protected] 2Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA; email:
[email protected] Annual Review of Control, Robotics, and Autonomous Systems Stability and Control of Power Grids Tao Liu,1,∗ Yue Song,1,∗ Lipeng Zhu,1,2,∗ and David J. Hill1,3 1Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China; email:
[email protected],
[email protected],
[email protected] 2College of Electrical and Information Engineering, Hunan University, Changsha, China; email:
[email protected] 3School of Electrical Engineering and Telecommunications, University of New South Wales, Kensington, New South Wales, Australia On the Inertia of Future More-Electronics Power Systems Jingyang Fang , Student Member, IEEE, Hongchang Li , Member, IEEE, Yi Tang , Senior Member, IEEE, and Frede Blaabjerg , Fellow, IEEE Power systems without fuel Josh A. Taylor a,n, Sairaj V. Dhople b,1, Duncan S. Callaway c a Electrical and Computer Engineering, University of Toronto, Toronto, Canada ON M5S 3G4 b Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA c Energy and Resources Group, University of California, Berkeley, CA 94720, USA Fundamentals of power systems modelling in the presence of converter- interfaced generation Mario Paolonea,⁎, Trevor Gauntb, Xavier Guillaudc, Marco Liserred, Sakis Meliopoulose, Antonello Montif, Thierry Van Cutsemg, Vijay Vittalh, Costas Vournasi Power system stability in the transition to a low carbon grid: A techno-economic perspective on challenges and opportunities Lasantha Meegahapola1 | Pierluigi Mancarella2,3 | Damian Flynn4 | Rodrigo Moreno5,6,7 focus today : control on device & system level 5