Dynamic ancillary services • specified as desired dynamic behavior / responses • ever faster responses for weaker (low-inertia) grids • location of service provision & grid perception matter DVPP: coordinate a heterogeneous ensemble of DERs to collectively provide dynamic ancillary services • sufficiently heterogeneous collection of DERs – reliably provide services consistently across all power & energy levels & all time scales – none of the DERs itself is able to do so • coordination aspect – disaggregation of DVPP specifications – decentralized control implementation |∆p| t tfcr a |∆pfcr| tfcr i 8 4 1 hydro BESS su cap 8 9 3 6 4 1 hydro BESS super- capacitor SG 3 (thermal-based) DVPP 1 ⇡ <latexit sha1_base64="u9TlhYF1chaJglqJH0mOQprDJzc=">AAADEXicdZLLbtQwFIY94dISbtOyZBMxqsQCjRJUCdiVixDLIpi2UhKNHOdMx6pvsp3pDFaegj1beAV2iC1PwBPwGjiXIjptjxT51zmfT34fnUIxamwc/x4E167fuLmxeSu8fefuvfvDre0DIytNYEIkk/qowAYYFTCx1DI4UhowLxgcFievm/rhArShUny0KwU5x8eCzijB1qemw+2skKw0K+6PDCul5XI6HMXjuI3ookh6MUJ97E+3Bn+yUpKKg7CEYWPSJFY2d1hbShjUYVYZUJic4GNIvRSYg3lSLqgyrcxd+4462vHFMppJ7T9hozb7/2WHuWmsepJjOzfrtSZ5WS2t7Ox57qhQlQVBuh/NKhZZGTVDiUqqgVi28gITTb3tiMyxxsT60YXhTrTwZell9gb8CzV8aAf21rt0RTPA2k3qM8VrJ+pLyJdMzXEB1mWNwR7ujjATcEok51iULjOUKwbLOk1y59swi6dulNRrVGOpQ/61u4KSWgowDZvmXcYl9VUtpf4EWp6n4zPar0ayvggXxcHTcbI7fvF+d7T3ql+STfQQPUKPUYKeoT30Du2jCSJoib6gr+hb8Dn4HvwIfnZoMOjvPEDnIvj1F+GYAg4=</latexit> 2/21
consisting of – DERs connected at a common bus – PMU frequency measurement at PCC broadcasted to all DERs • ancillary service = aggregate DVPP specification: – desired grid-following fast frequency response power = H s + D = Tdes(s) · frequency • task: coordinated model matching – design decentralized DER controls so that DVPP behavior matches the aggregate specification i power i ! = H s + D · PMU-frequency – while taking device-level constraints into account broadcast + aggregate DER 1 …. DER n output signal + comm input signal (PMU frequency signal at PCC) (active power injection at PCC) DVPP ⇡ <latexit sha1_base64="u9TlhYF1chaJglqJH0mOQprDJzc=">AAADEXicdZLLbtQwFIY94dISbtOyZBMxqsQCjRJUCdiVixDLIpi2UhKNHOdMx6pvsp3pDFaegj1beAV2iC1PwBPwGjiXIjptjxT51zmfT34fnUIxamwc/x4E167fuLmxeSu8fefuvfvDre0DIytNYEIkk/qowAYYFTCx1DI4UhowLxgcFievm/rhArShUny0KwU5x8eCzijB1qemw+2skKw0K+6PDCul5XI6HMXjuI3ookh6MUJ97E+3Bn+yUpKKg7CEYWPSJFY2d1hbShjUYVYZUJic4GNIvRSYg3lSLqgyrcxd+4462vHFMppJ7T9hozb7/2WHuWmsepJjOzfrtSZ5WS2t7Ox57qhQlQVBuh/NKhZZGTVDiUqqgVi28gITTb3tiMyxxsT60YXhTrTwZell9gb8CzV8aAf21rt0RTPA2k3qM8VrJ+pLyJdMzXEB1mWNwR7ujjATcEok51iULjOUKwbLOk1y59swi6dulNRrVGOpQ/61u4KSWgowDZvmXcYl9VUtpf4EWp6n4zPar0ayvggXxcHTcbI7fvF+d7T3ql+STfQQPUKPUYKeoT30Du2jCSJoib6gr+hb8Dn4HvwIfnZoMOjvPEDnIvj1F+GYAg4=</latexit> desired aggregate behavior 3/21
service: FCR-D power frequency = 3100 · (6.5s + 1) (2s + 1)(17s + 1) • well-known issue: actuation of hydro via governor is non-minimum phase → initial power surge opposes control → highly unsatisfactory response • discussed solution: augment hydro with batteries for fast response → works but not very economic • better DVPP solution: coordinate hydro & wind to cover all time scales remainder of the talk: how to do it ? Björk, Johansson, & Dörfler (2022). Dynamic virtual power plant design for fast frequency reserves: Coordinating hydro and wind. IEEE Transactions on Control of Network Systems. 4/21
PCC transmission grid Tdes(s) ≈ PCC Part I: DVPP control • disaggregation of desired ancillary service • decentralized device-level model matching control • case study, experiments, & sketch of extensions Part II: grid codes & optimal services • grid codes & translation into desired I/O behavior • perceive local grid model via system identification • optimize DER response subject to grid-code flexibility 5/21
• global aggregated power output ∆pagg ∆qagg = i ∆pi ∆qi • DERs with controllable closed-loop behaviors Ti(s) • overall/global/aggregate DVPP behavior ∆pagg(s) ∆qagg(s) = i Ti(s) ∆f(s) ∆v(s) • desired DVPP specification ∆pdes(s) ∆qdes(s) = Tfp des (s) 0 0 Tvq des (s) Tdes(s) ∆f(s) ∆v(s) → aggregation condition: i Ti(s) = Tdes(s) DVPP: collection of heterogeneous DERs grid-follow. DER n grid-follow. DER 1 . . . ∆f ∆v ∆pagg ∆qagg ∆p1 ∆q1 ∆pn ∆qn plant 1 control 1 T1(s) plant n control n Tn(s) ≈ Tdes(s) ∆pdes ∆qdes ∆f ∆v Task: Find local controllers such that the aggregation condition & the local DER constraints are satisfied. 6/21
of unit i ... ... Disaggregate Tdes(s) into local desired behaviors via dynamic participation factors (DPFs) Tdes(s) Mi(s) = mfp i (s) 0 0 mvq i (s) Mi(s) · Tdes(s) such that i Ti(s) = Tdes(s) = i Mi(s) · Tdes(s) participation condition i Mi(s) = I2 2) Local matching control plant i matching control i ≈ desired behavior i Mi(s) · Tdes(s) For each unit i, design local matching control to match desired behavior i Ti(s) Ti(s) = Mi(s) · Tdes(s) Häberle, V., Fisher, M., Prieto, E. & Dörfler, F. (2021). Control design of dynamic virtual power plants: an adaptive divide-&-conquer approach. IEEE Transactions on Power Systems . 7/21
and mvq i (s) of the DVPP units as transfer functions, among others characterized by • a time constant τi for the roll-off frequency • a DC gain mi(0) = µi to account for power capacity limitations → divide DVPP units into three categories, i.e., we envision low-pass filter participation units that can provide regulation on longer time scales including steady-state contributions mi(s) = µi τis+1 frequency amplitude high-pass filter participation units that can provide regulation on very short time scales (fast response capability) mi(s) = τis τis+1 frequency amplitude band-pass filter participation units able to cover the intermediate regime mi(s) = (τi−τj )s (τis+1)(τj s+1) frequency amplitude 8/21
local matching controllers such that the local closed-loop behavior matches the local desired specification Ti(s) = Mi(s) · Tdes(s) General setup for matching control of unit i • incorporate local desired behavior Mi(s) · Tdes(s) as reference model into conventional converter control architecture • different matching control implementations, e.g., classical PI-based control, robust & optimal H∞ methods, etc. ˙ x = Ax + Bu + ˆ Bw y = Cx + Du + ˆ Dw Ti(s) K(s) plant i matching control controller local reference model w = ∆f ∆v y = ∆pi ∆qi Mi(s) · Tdes(s) Goal: minimize local matching error! 9/21
acquisition module MC220 CPU FC 1 ASM SG PLC FC 2 FC 3 main power supply ASM PCC pconv p pconv s p pconv w fref grid pv statcom wind 49.8 50 50.2 0.45 0.5 0.55 0.26 0.28 0.3 0.32 0.34 -0.05 0 0.05 0 5 10 15 20 25 30 0.18 0.2 0.22 wind desired desired desired statcom pv sum desired with DVPP without DVPP • DVPP (wind, PV, STATCOM) for frequency regulation • DVPP response during a ± 1kW load jump • response characteristics according to selected DPFs Andrejewski, M., Häberle, V., Goldschmidt, N., Dörfler, F. & Schulte, H. (2023). Experimental validation of a dynamic virtual power plant control concept based on multi-converter power hardware-in-the-loop test bench, 22nd Wind and Solar Integration Workshop . 11/21
des (s) Tfq des (s) Tvq des (s) noncontrollable units 4 1 hydro BESS super- capacitor DVPP 10-2 100 102 10-3 10-2 10-1 100 101 grid-forming DVPP ∆fdes(s) ∆vdes(s) = Tdes(s) ∆p ∆q adaptive DPF active power before cloud during cloud spatially distributed POC 1 POC r remaining power system DVPP area ≈ Tdes(s) DVPP POC 1 POC r remaining power system DVPP area others • complex-frequency DVPP • DC DVPP • ... Häberle, V., Fisher, M., Prieto, E. & Dörfler, F. (2021). Control design of dynamic virtual power plants: an adaptive divide-&-conquer approach. IEEE Transactions on Power Systems. Häberle, V., Tayyebi, A., He, X., Prieto, E. & Dörfler, F. (2023). Grid-forming & spatially distributed control design of dynamic virtual power plants. IEEE Transactions on Smart Grid. Domingo-Enrich, R., Häberle, V., He, X., Prieto-Araujo, E. & Dörfler, F. (2023). Complex frequency control of dynamic virtual power plants. Master Thesis. 12/21
PCC transmission grid Tdes(s) ≈ PCC Part I: DVPP control • disaggregation of desired ancillary service • decentralized device-level model matching control • case study, experiments, & sketch of extensions Part II: grid codes & optimal services • grid codes & translation into desired I/O behavior • perceive local grid model via system identification • optimize DER response subject to grid-code flexibility 13/21
linear time-domain grid code curves into parametric transfer functions ∆p(s) ∆q(s) = Tfp des (s, αfp) 0 0 Tvq des (s, αvq) = Tdes(s,α) ∆f(s) ∆v(s) −→ parameters α need to satisfy grid code requirements & device-level constraints • superposition of different ancillary services Tfp des (s, αfp) = Tfcr des (s, αfcr) FCR + Tffr des (s, αffr) FFR + ... |∆p| t tfcr a |∆pfcr| tfcr i exact Tfcr des (s, αfcr) minimum grid code Example: FCR Capability Curve (EU 2016/631) • active power capability curve after frequency drop • parameterized by time constants αfcr := [tfcr i , tfcr a ] • grid code requirements on FCR capacity |∆pfcr| 0 ≤ tfcr i ≤ tfcr i,max & tfcr i ≤ tfcr a ≤ tfcr a,max • device-level ramping rate constraint |∆pfcr| ≤ tfcr a − tfcr i · rp max Goal: optimize response over α & grid perception Häberle, V., Huang, L., He, X., Prieto-Araujo, E., & Dörfler, F. (2023). Dynamic ancillary services: From grid codes to transfer function-based converter control. arXiv:2310.01552 . 14/21
dynamic participation factors – decentralized model matching control – case study, experiments & extensions • Part II: grid codes & optimal services – grid codes & translation into I/O behavior – perceive power grid via system identification – optimize DER response s.t. grid-code flexibility transmission grid DER 1 DER 2 DER n DVPP PCC transmission grid Tdes(s) ≈ PCC Future work • extension of P&O strategy to multi-agent scenarios: what if many DERs learn in parallel ? • development of next-generation grid codes: decentralized stability certificates, service criteria, ... link to related publications 21/21