Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「プログラマーのためのCPU入門」は入り口として丁度よい!
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
forrep
February 28, 2024
Programming
53
37k
「プログラマーのためのCPU入門」は入り口として丁度よい!
forrep
February 28, 2024
Tweet
Share
More Decks by forrep
See All by forrep
Linux && Docker 研修/Linux && Docker training
forrep
28
5.6k
RAGにベクトルDBは必要ない!DBも不要で運用めちゃ楽な RAG Chatbot を作った話
forrep
38
17k
Google Analytics でサイト速度を計測する / Measure site speed with Google Analytics
forrep
2
390
最近コードレビューで指摘したこと
forrep
4
570
DevTools でパフォーマンスチューニング入門 / Introduction to Performance Tuning with DevTools
forrep
2
480
技術的負債に対する視力を得る / How to View Technical Debt
forrep
0
880
しくじり先生 - NFS+sqliteで苦労した話から学ぶ、問題解決の考え方 / problem-solving approach
forrep
1
1.3k
理屈で考える、データベースのチューニング / Database tuning How-To
forrep
28
9.5k
ブラウザの制約条件から考えるフロントエンドのリソース設計/Frontend Performance How to
forrep
2
870
Other Decks in Programming
See All in Programming
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
190
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
470
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
660
24時間止められないシステムを守る-医療ITにおけるランサムウェア対策の実際
koukimiura
1
150
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
400
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
150
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
290
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
7
2.5k
CSC307 Lecture 10
javiergs
PRO
1
670
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1.1k
Vibe Coding - AI 驅動的軟體開發
mickyp100
0
180
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
エンジニアに許された特別な時間の終わり
watany
106
230k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
170
The Art of Programming - Codeland 2020
erikaheidi
57
14k
AI: The stuff that nobody shows you
jnunemaker
PRO
2
290
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
58
50k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Claude Code のすすめ
schroneko
67
210k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
760
Transcript
「プログラマーのためのCPU入門」 は入り口として丁度よい! ~ Webエンジニア目線 ~ 1 株式会社ラクーンホールディングス 技術戦略部 羽山純
自己紹介 • 名前 ◦ 羽山 純(Jun Hayama) • 所属 ◦
株式会社ラクーンホールディングス 技術戦略部 • 技術領域 ◦ バックエンド・インフラ ◦ パフォーマンス改善 ▪ MySQLでプライマリキーをUUIDにする前に知っておいて欲しいこと ◦ AI(企業審査AI) • 個人活動 ◦ アプリ開発 2
紹介する書籍 プログラマーのためのCPU入門 - CPUは如何にしてソフトウェアを 高速に実行するか いわゆる「低レイヤ」の書籍です 3 Takenobu Tani.(2023-1-25).“プログラマーのためのCPU入門 -
CPUは如何にしてソフトウェアを高速に実行するか”.ラムダ ノート.https://www.lambdanote.com/products/cpu
「低レイヤ」について、こう思っていませんか? • WebエンジニアにはCPUほどの低レイヤは必要ない • クラウド環境だから細かいことを考えなくてもよい • 現代のCPUは十分に速いから気にしなくてもよい → そんなことはありません 4
本書で得られるメリット(1) 本書で得られるメリット(1) カーネルの理解を深められる 5
カーネルの知識を深められる 上位レイヤは下位レイヤに依存し、 各レイヤの習得には1~2レイヤ下までの知識が必要です 本書はCPUへの理解を通して カーネルの理解を深めてくれます 6 アプリケーション ライブラリ・FW ランタイム・VM コンパイラ
ユーザー空間 カーネル ハードウェア OS CPU 他 言語 依存 依存 依存 依存 依存
本書で得られるメリット(2) 本書で得られるメリット(2) 長く生きる汎用的な知識と問題解決力 7
山で遭難したら登れ 「山で遭難したら登れ」と言われます 逆すり鉢の形状で山頂に近づくほど狭くなるため 登ると正規ルートに復帰できる可能性が 高くなります この形は先ほどの「低レイヤ」の図 と似てませんか? 8
低レイヤほどバリエーションが減少 アプリケーションは要件やサービスだけ星の数ほど ライブラリ・FW は Django, Flask, SpringBoot, Rails, , ,
その下層は Python, Java, Ruby, , , OS は Linux がデファクト 低レイヤほどバリエーションが少なく 長く使える汎用的な知識となります 9 アプリケーション ライブラリ・FW ランタイム・VM コンパイラ ユーザー空間 カーネル ハードウェア OS CPU 他 言語
問題解決力 問題解決では、順に低レイヤに降りると解決しやすいです いずこかで発生した問題に対し、 降りられる限界のレイヤが そのエンジニアの力量です 本書でCPUの知識を通して カーネルへの理解を深めると 問題解決力が上昇します 10 アプリケーション
ライブラリ・FW ランタイム・VM コンパイラ ユーザー空間 カーネル ハードウェア OS CPU 他 言語
本書で得られるメリット(3) 本書で得られるメリット(3) パフォーマンスはやっぱり大切 11
アプリ・インフラの高速化のヒントがたくさん • システムコールが遅い理由を仕組みから理解できた • メモリは仮想記憶のため1度の取得に2回のアクセスが必要 ◦ 仮想アドレスと物理アドレスをページテーブルで変換 ◦ ページテーブルのキャッシュ(TLB)をミスするととても遅い ◦
巨大なメモリ空間を利用するとページテーブルが肥大化する • メモリはCPUより4倍ほど遅いが、L1キャッシュミスすると 100倍ほどまで遅くなる、メインメモリはとても遅い ◦ 小さいメモリ空間の利用は速いが、巨大なメモリ空間をランダ ムで使うと、キャッシュミスして100~1000倍は遅い • 複数コア・マルチスレッドで同一アドレスへの書き込みを行 うと「コヒーレンスミス」が発生して非常に遅い ◦ マルチプロセスモデルの方が優れているシーンもある 12
まとめと余談 Webエンジニア目線で本書は CPUを通してカーネルの知識を深めるために有用です そして、効率的なアルゴリズムを組むのに最適な知識が たくさん詰まっています パズルの最適解を探すアプリを開発していた時代に 出会っていたら、あと2割は演算を速くできたと思います 13