Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
傾いたディラックコーンをもつ系における磁場中のエネルギー準位構造
Search
Kazu Ghalamkari
March 09, 2016
Research
0
940
傾いたディラックコーンをもつ系における磁場中のエネルギー準位構造
卒論発表
Kazu Ghalamkari
March 09, 2016
Tweet
Share
More Decks by Kazu Ghalamkari
See All by Kazu Ghalamkari
Matrix and Tensor Factorization for Machine Learning
gkazunii
0
600
Ph.D. defense "Convex Manifold Approximation for Tensors"
gkazunii
0
420
Non-negative low-rank approximations for multi-dimensional arrays on statistical manifold
gkazunii
2
190
(NII Open House 2022) 欠損値を含むデータからの高速パターン抽出
gkazunii
0
340
平均場近似を用いた非負テンソルの高速な低ランク近似法(StatsML Symposium'21, 招待講演)
gkazunii
2
780
(NII Open House 2021)ビックデータ時代のための情報の効率的な圧縮
gkazunii
0
250
(NII Open House 2020) 異なるアルゴリズムを同じ視点から眺めてみようー機械学習の幾何的解釈
gkazunii
0
340
Real-time_Hand_Gesture_Detection_and_Classification_Using_CNN.pdf
gkazunii
0
140
GradCAM
gkazunii
0
370
Other Decks in Research
See All in Research
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
870
20250624_熊本経済同友会6月例会講演
trafficbrain
1
660
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
160
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
260
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
250
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
300
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
380
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
62
30k
Nullspace MPC
mizuhoaoki
1
140
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
190
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
280
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
450
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
How to Ace a Technical Interview
jacobian
280
24k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Cost Of JavaScript in 2023
addyosmani
53
9k
Writing Fast Ruby
sferik
629
62k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Mobile First: as difficult as doing things right
swwweet
224
10k
How GitHub (no longer) Works
holman
315
140k
Raft: Consensus for Rubyists
vanstee
139
7.1k
GitHub's CSS Performance
jonrohan
1032
460k
RailsConf 2023
tenderlove
30
1.2k
Transcript
傾いたディラックコーンをもつ系における 磁場中のエネルギー準位構造 12-041-016 ガラムカリ 和
目次 • ディラックコーン • 傾いたディラックコーン • 一様磁場中の傾いたディラックコーン • 六角格子系 ・この発表を通して電子のスピンは一切考慮しない
・扱う系は全て2次元系
ディラックコーン
2次元系のディラックコーン 自由電子の分散関係 ディラックコーン ∝ ±|| = ℏ2||2 2 ∝ 2
kx ky 例:グラフェン 2次元 kx ky
2次元系における磁場中の議論 自由電子の分散関係 ディラックコーン = ℎ + 1 2 = ±ℎ
= 0をみたす状態がある = 0をみたす状態がない = 0,1,2 ⋯ = 0,1,2 ⋯ 0 ⋯ ⋯ ⋯ 0 古典的にはサイクロトロン運動 →調和振動子の形に帰着 ゼロ点振動 ここに注目
ディラックコーンを実現する系の例 例:α-(BEDT-TTF)2 I3 傾いたディラックコーン 例:グラフェン(六方格子上にC原子を並べたシート) ディラックコーン ky ky kx kx
kx ky ky kx 傾いたディラックコーンに磁場を与えた時のゼロエネルギー準位を調べる J. Phys. Soc. Jpn. 78 (2009) 114711
傾いたディラックコーンについて調べる
傾いていないディラックコーン = 0 − + 0 = ± 2 +
2 = ± ディラックコーンを実現するハミルトニアン ディラックコーンの分散関係 kx ky サブ格子A サブ格子B
傾いたディラックコーン = − + = ± 2 + 2 =
± 傾いたディラックコーンを実現するハミルトニアン 傾いたディラックコーンの分散関係 ∈ ℝ
ディラックコーンを傾かせる。 = ± || kx ky = 0 に対してを大きくするとコーンが傾く =
0.6 = 1 倒れ切る 母線
ディラックコーンに磁場をかける = 0 − + 0 磁場なし 一様な磁場B=(0,0,B)を印加。 = 0,
, 0 = 0 − ( +) + ( +) 0 → − 非可換性をどうするか [, ] =
ディラックコーンに磁場をかける 一様な磁場B=(0,0,B)を与える。 = 0, , 0 = 0 − (
+) + ( +) 0 = 2 0 † 0 0 = 0 0 が基底状態 0 = 2 0 † 0 0 0 = 0 エネルギー0の準位が存在することを確認した。 0 0 :調和振動子の基底状態 , † = 1 調和振動子の昇降演算子 = 1 2 ( − − )
傾いたディラックコーンに磁場をかける = − + 磁場なし 一様な磁場B=(0,0,B)を印加。 = 0, , 0
= ( +) − ( +) + ( +) ( + ) → − 解けてる [, ] =
傾いたディラックコーンに磁場をかける 一様な磁場B=(0,0,B)を印加。 = 0, , 0 = ( +) −
( +) + ( +) ( + ) = 2 − 2 († − ) † − 2 († − ) ゼロエネルギー状態が現れるかは分からない。 →傾いたディラックコーンを実現するモデルを考える →そこに磁場を与えた時のスペクトルを数値的に求める , † = 1
六角格子系
傾いたディラックコーンを実現するモデル 第1隣接へのHopping 1 > 0 第2隣接へのHopping 2 ≥ 0 電子は第1隣接と第2隣接の一部にとびうつる
グラフェンをベースにした六角格子モデル サイト数 2N2 周期境界条件 − − −
六角格子系のバンド構造 1 = 1, 2 = 0 六角格子系のハミルトニアン −22 [cos
⋅ 1 + cos(・2 )] ∑ [cos ⋅ − sin ⋅ ] ∑ [cos ⋅ + sin ⋅ ] −22 [cos ⋅ 1 + cos(・2 )] = ディラックポイント近傍でのバンド構造 1 = 1, 2 = 0.5 1 = 1, 2 = 0 1 : 2 = 1: 0.5でコーンが倒れ切る
六角格子系に一様磁場を与える とびうつりの経路に沿った の線積分 だけ位相がズレる。 Hopping 1 → exp ℎ
・ 1 2 → exp ℎ ・ 2 = 0,0, サイト数 2N2 = 0, , 0 実空間でのハミルトニアンを書き下して数値計算 周期境界条件より = 2 ℏ ∈ ℤ フーリエ変換ができない。
対角化する7200次元行列 0 1 0 0 −1 0 1 0 0
−1 0 1 0 0 −1 0 0 21 0 0 −21 0 21 0 0 −21 0 21 0 0 −21 0 1 3 2 2 0 0 − 3 2 2 1 3 2 2 0 0 − 3 2 2 1 1 2 2 0 0 − 3 22 1 1 3 22 0 0 − 3 2 2 1 3 2 2 0 0 − 3 2 2 1 3 2 2 0 0 − 3 21 1 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ = = 1, ℏ = 1
六角格子系に磁場を与えた系のスペクトル (磁場) E 2 = 0(コーンは傾いていない), = 60の場合 = 1で2
を動かしていく エネルギーゼロの準位がある
六角格子系に磁場を与えた系のスペクトル 2 (傾き具合) E = 60, = 1, 1 =
1 1 /2 連続したスペクトルに埋没 傾くとゼロエネルギー準位がなくなる 注目
まとめ ・コーンを倒すとゼロエネルギー準位が消える。 ・ゼロエネルギー準位につながる孤立準位は残る。 ・コーンが倒れ切ると孤立準位は連続した準位に埋没する。 今後の課題 ・倒れ切る直前までの解析解と比較する。 E 2 (傾き具合) 1
2
どのように数値計算したか • 六方格子系を正方格子系に帰着させた。 質問用
どのように数値計算したか (0,0) 格子点 , に粒子がある状態 | ۧ , 境界条件 |
ۧ , = | ۧ + , | ۧ , = | ۧ , + = −1 ∑, | ۧ , ۦ + 1, | + | ۧ , ۦ − 1, | −2 ∑, | ۧ , ۦ − 1, + 1| + | ۧ , ۦ + 1, + 1| + H. c. Hopping 1 → exp ℎ ・ 1 2 → exp ℎ ・ 2 −1 ∑, | ۧ , ۦ, + 1| + | ۧ , ۦ, − 1| 偶奇が不一致のときのみ この系のハミルトニアン , の偶奇が一致のときのみ足す 質問用
傾いたコーンに磁場を与えた場合の解析解 傾いた2次元ディラックコーンに磁場をあたえた系 = sgn() 23|| < で解析的に解けた。 = 1 −
2 ∈ ℤ コーンが倒れ切った時の準位の様子はわからない 質問用 傾いたコーンに一様な磁場B=(0,0,B)を印加。 = ( +) − ( +) + ( +) ( + ) → − = 0, , 0
パイエルス位相について 質問用 = 2 2 + () 12 = න∗
− 1 ( − ) − :Rに局在した電子の波動関数 = ( − )2 2 + () 12 = න − ℎ∗ − − 2 2 + ℎ( − 2 ) = ℏ ′ ・ න ∗ − 1 2 2 + ( − 2 ) 結晶格子中でベクトルポテンシャルは不変であることを用いた。 磁場がない場合 磁場がある場合 = න ・ 磁場がある時に1 に 局在した波動関数
リフシッツ転移 = でコーンが倒れ切る = 0 = 電子が下のコーンを全て占有している状態を考える 状態密度が小さい 状態密度が 突然大きくなる
ky kx 予備
リフシッツ転移 (傾き具合) 比熱 0 比熱などの量が不連続に変化。 予備