Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
傾いたディラックコーンをもつ系における磁場中のエネルギー準位構造
Search
Kazu Ghalamkari
March 09, 2016
Research
0
860
傾いたディラックコーンをもつ系における磁場中のエネルギー準位構造
卒論発表
Kazu Ghalamkari
March 09, 2016
Tweet
Share
More Decks by Kazu Ghalamkari
See All by Kazu Ghalamkari
Matrix and Tensor Factorization for Machine Learning
gkazunii
0
560
Ph.D. defense "Convex Manifold Approximation for Tensors"
gkazunii
0
390
Non-negative low-rank approximations for multi-dimensional arrays on statistical manifold
gkazunii
2
180
(NII Open House 2022) 欠損値を含むデータからの高速パターン抽出
gkazunii
0
320
平均場近似を用いた非負テンソルの高速な低ランク近似法(StatsML Symposium'21, 招待講演)
gkazunii
2
720
(NII Open House 2021)ビックデータ時代のための情報の効率的な圧縮
gkazunii
0
220
(NII Open House 2020) 異なるアルゴリズムを同じ視点から眺めてみようー機械学習の幾何的解釈
gkazunii
0
320
Real-time_Hand_Gesture_Detection_and_Classification_Using_CNN.pdf
gkazunii
0
140
GradCAM
gkazunii
0
330
Other Decks in Research
See All in Research
CARMUI-NET:自動運転車遠隔監視のためのバーチャル都市プラットフォームにおける通信品質変動機能の開発と評価 / UBI85
yumulab
0
220
VAGeo: View-specific Attention for Cross-View Object Geo-Localization
satai
3
290
言語モデルによるAI創薬の進展 / Advancements in AI-Driven Drug Discovery Using Language Models
tsurubee
2
360
2025年度 生成AIの使い方/接し方
hkefka385
1
660
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
satai
3
170
SkySense : A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery
satai
3
180
NLP2025SharedTask翻訳部門
moriokataku
0
290
CHaserWeb:ブラウザ上で動作する対戦型プログラミング学習環境の提案と評価 / i2025-inoue
yumulab
0
160
Cross-Media Information Spaces and Architectures
signer
PRO
0
220
Generative Models 2025
takahashihiroshi
20
9.1k
ASSADS:ASMR動画に合わせて撫でられる感覚を提示するシステムの開発と評価 / ec75-shimizu
yumulab
1
280
NLP2025参加報告会 LT資料
hargon24
1
310
Featured
See All Featured
How GitHub (no longer) Works
holman
314
140k
The Language of Interfaces
destraynor
158
25k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
1
85
How STYLIGHT went responsive
nonsquared
100
5.6k
For a Future-Friendly Web
brad_frost
178
9.8k
Designing for humans not robots
tammielis
253
25k
Faster Mobile Websites
deanohume
307
31k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Fireside Chat
paigeccino
37
3.5k
Fontdeck: Realign not Redesign
paulrobertlloyd
84
5.5k
Transcript
傾いたディラックコーンをもつ系における 磁場中のエネルギー準位構造 12-041-016 ガラムカリ 和
目次 • ディラックコーン • 傾いたディラックコーン • 一様磁場中の傾いたディラックコーン • 六角格子系 ・この発表を通して電子のスピンは一切考慮しない
・扱う系は全て2次元系
ディラックコーン
2次元系のディラックコーン 自由電子の分散関係 ディラックコーン ∝ ±|| = ℏ2||2 2 ∝ 2
kx ky 例:グラフェン 2次元 kx ky
2次元系における磁場中の議論 自由電子の分散関係 ディラックコーン = ℎ + 1 2 = ±ℎ
= 0をみたす状態がある = 0をみたす状態がない = 0,1,2 ⋯ = 0,1,2 ⋯ 0 ⋯ ⋯ ⋯ 0 古典的にはサイクロトロン運動 →調和振動子の形に帰着 ゼロ点振動 ここに注目
ディラックコーンを実現する系の例 例:α-(BEDT-TTF)2 I3 傾いたディラックコーン 例:グラフェン(六方格子上にC原子を並べたシート) ディラックコーン ky ky kx kx
kx ky ky kx 傾いたディラックコーンに磁場を与えた時のゼロエネルギー準位を調べる J. Phys. Soc. Jpn. 78 (2009) 114711
傾いたディラックコーンについて調べる
傾いていないディラックコーン = 0 − + 0 = ± 2 +
2 = ± ディラックコーンを実現するハミルトニアン ディラックコーンの分散関係 kx ky サブ格子A サブ格子B
傾いたディラックコーン = − + = ± 2 + 2 =
± 傾いたディラックコーンを実現するハミルトニアン 傾いたディラックコーンの分散関係 ∈ ℝ
ディラックコーンを傾かせる。 = ± || kx ky = 0 に対してを大きくするとコーンが傾く =
0.6 = 1 倒れ切る 母線
ディラックコーンに磁場をかける = 0 − + 0 磁場なし 一様な磁場B=(0,0,B)を印加。 = 0,
, 0 = 0 − ( +) + ( +) 0 → − 非可換性をどうするか [, ] =
ディラックコーンに磁場をかける 一様な磁場B=(0,0,B)を与える。 = 0, , 0 = 0 − (
+) + ( +) 0 = 2 0 † 0 0 = 0 0 が基底状態 0 = 2 0 † 0 0 0 = 0 エネルギー0の準位が存在することを確認した。 0 0 :調和振動子の基底状態 , † = 1 調和振動子の昇降演算子 = 1 2 ( − − )
傾いたディラックコーンに磁場をかける = − + 磁場なし 一様な磁場B=(0,0,B)を印加。 = 0, , 0
= ( +) − ( +) + ( +) ( + ) → − 解けてる [, ] =
傾いたディラックコーンに磁場をかける 一様な磁場B=(0,0,B)を印加。 = 0, , 0 = ( +) −
( +) + ( +) ( + ) = 2 − 2 († − ) † − 2 († − ) ゼロエネルギー状態が現れるかは分からない。 →傾いたディラックコーンを実現するモデルを考える →そこに磁場を与えた時のスペクトルを数値的に求める , † = 1
六角格子系
傾いたディラックコーンを実現するモデル 第1隣接へのHopping 1 > 0 第2隣接へのHopping 2 ≥ 0 電子は第1隣接と第2隣接の一部にとびうつる
グラフェンをベースにした六角格子モデル サイト数 2N2 周期境界条件 − − −
六角格子系のバンド構造 1 = 1, 2 = 0 六角格子系のハミルトニアン −22 [cos
⋅ 1 + cos(・2 )] ∑ [cos ⋅ − sin ⋅ ] ∑ [cos ⋅ + sin ⋅ ] −22 [cos ⋅ 1 + cos(・2 )] = ディラックポイント近傍でのバンド構造 1 = 1, 2 = 0.5 1 = 1, 2 = 0 1 : 2 = 1: 0.5でコーンが倒れ切る
六角格子系に一様磁場を与える とびうつりの経路に沿った の線積分 だけ位相がズレる。 Hopping 1 → exp ℎ
・ 1 2 → exp ℎ ・ 2 = 0,0, サイト数 2N2 = 0, , 0 実空間でのハミルトニアンを書き下して数値計算 周期境界条件より = 2 ℏ ∈ ℤ フーリエ変換ができない。
対角化する7200次元行列 0 1 0 0 −1 0 1 0 0
−1 0 1 0 0 −1 0 0 21 0 0 −21 0 21 0 0 −21 0 21 0 0 −21 0 1 3 2 2 0 0 − 3 2 2 1 3 2 2 0 0 − 3 2 2 1 1 2 2 0 0 − 3 22 1 1 3 22 0 0 − 3 2 2 1 3 2 2 0 0 − 3 2 2 1 3 2 2 0 0 − 3 21 1 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ = = 1, ℏ = 1
六角格子系に磁場を与えた系のスペクトル (磁場) E 2 = 0(コーンは傾いていない), = 60の場合 = 1で2
を動かしていく エネルギーゼロの準位がある
六角格子系に磁場を与えた系のスペクトル 2 (傾き具合) E = 60, = 1, 1 =
1 1 /2 連続したスペクトルに埋没 傾くとゼロエネルギー準位がなくなる 注目
まとめ ・コーンを倒すとゼロエネルギー準位が消える。 ・ゼロエネルギー準位につながる孤立準位は残る。 ・コーンが倒れ切ると孤立準位は連続した準位に埋没する。 今後の課題 ・倒れ切る直前までの解析解と比較する。 E 2 (傾き具合) 1
2
どのように数値計算したか • 六方格子系を正方格子系に帰着させた。 質問用
どのように数値計算したか (0,0) 格子点 , に粒子がある状態 | ۧ , 境界条件 |
ۧ , = | ۧ + , | ۧ , = | ۧ , + = −1 ∑, | ۧ , ۦ + 1, | + | ۧ , ۦ − 1, | −2 ∑, | ۧ , ۦ − 1, + 1| + | ۧ , ۦ + 1, + 1| + H. c. Hopping 1 → exp ℎ ・ 1 2 → exp ℎ ・ 2 −1 ∑, | ۧ , ۦ, + 1| + | ۧ , ۦ, − 1| 偶奇が不一致のときのみ この系のハミルトニアン , の偶奇が一致のときのみ足す 質問用
傾いたコーンに磁場を与えた場合の解析解 傾いた2次元ディラックコーンに磁場をあたえた系 = sgn() 23|| < で解析的に解けた。 = 1 −
2 ∈ ℤ コーンが倒れ切った時の準位の様子はわからない 質問用 傾いたコーンに一様な磁場B=(0,0,B)を印加。 = ( +) − ( +) + ( +) ( + ) → − = 0, , 0
パイエルス位相について 質問用 = 2 2 + () 12 = න∗
− 1 ( − ) − :Rに局在した電子の波動関数 = ( − )2 2 + () 12 = න − ℎ∗ − − 2 2 + ℎ( − 2 ) = ℏ ′ ・ න ∗ − 1 2 2 + ( − 2 ) 結晶格子中でベクトルポテンシャルは不変であることを用いた。 磁場がない場合 磁場がある場合 = න ・ 磁場がある時に1 に 局在した波動関数
リフシッツ転移 = でコーンが倒れ切る = 0 = 電子が下のコーンを全て占有している状態を考える 状態密度が小さい 状態密度が 突然大きくなる
ky kx 予備
リフシッツ転移 (傾き具合) 比熱 0 比熱などの量が不連続に変化。 予備