Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kafka Partitioning Algorithm
Search
Gordon Diggs
September 02, 2016
Technology
0
130
Kafka Partitioning Algorithm
A look at the default partitioning algorithm that Kafka uses
Gordon Diggs
September 02, 2016
Tweet
Share
More Decks by Gordon Diggs
See All by Gordon Diggs
John Coltrane: Lessons in Leadership
gordondiggs
2
280
The Customer Gap
gordondiggs
1
100
Picking Records with JavaScript and a Button
gordondiggs
0
74
Supbutton
gordondiggs
0
60
Rayons
gordondiggs
0
61
Sous Vide
gordondiggs
0
78
Dev Events & Internal Tools at Paperless Post
gordondiggs
0
120
The Joys and Pains of Working With an Old Codebase
gordondiggs
0
130
The Joys and Pains of Working with an Old Codebase
gordondiggs
1
2.3k
Other Decks in Technology
See All in Technology
比起獨自升級 我更喜歡 DevOps 文化 <3
line_developers_tw
PRO
0
150
マルチテナント+マルチプロダクト SaaS への AI Agent の組み込み方
kworkdev
PRO
2
330
工具人的一生: 開發很多 AI 工具讓我 慵懶過一生
line_developers_tw
PRO
0
140
「伝える」を加速させるCursor術
naomix
0
620
Workflows から Agents へ ~ 生成 AI アプリの成長過程とアプローチ~
belongadmin
3
150
Amplifyとゼロからはじめた AIコーディング 成果と展望
mkdev10
1
210
doda開発 生成AI元年宣言!自家製AIエージェントから始める生産性改革 / doda Development Declaration of the First Year of Generated AI! Productivity Reforms Starting with Home-grown AI Agents
techtekt
0
140
"SaaS is Dead" は本当か!? 生成AI時代の医療 Vertical SaaS のリアル
kakehashi
PRO
3
190
OpenTelemetry Collector internals
ymotongpoo
5
530
Amazon Q Developer for GitHubとAmplify Hosting でサクッとデジタル名刺を作ってみた
kmiya84377
0
3.4k
自分を理解するAI時代の準備 〜マイプロフィールMCPの実装〜
edo_m18
0
110
CIでのgolangci-lintの実行を約90%削減した話
kazukihayase
0
220
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.3k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
780
Code Reviewing Like a Champion
maltzj
524
40k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
For a Future-Friendly Web
brad_frost
179
9.8k
Done Done
chrislema
184
16k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Transcript
Kafka Partitioning Algorithm CC LnL 20160902
Kafka Partitioning Algorithm CC LnL 20160902
Kafka Partitioning • Can be keyed • Round robin (mostly)
by default
public int partition(String topic, Object key, byte[] keyBytes, Object value,
byte[] valueBytes, Cluster cluster) { List<PartitionInfo> partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { int nextValue = counter.getAndIncrement(); List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic); if (availablePartitions.size() > 0) { int part = Utils.toPositive(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return Utils.toPositive(nextValue) % numPartitions; } } else { // hash the keyBytes to choose a partition return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions; } }
public int partition(String topic, Object key, byte[] keyBytes, Object value,
byte[] valueBytes, Cluster cluster) { List<PartitionInfo> partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { int nextValue = counter.getAndIncrement(); List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic); if (availablePartitions.size() > 0) { int part = Utils.toPositive(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return Utils.toPositive(nextValue) % numPartitions; } } else { // hash the keyBytes to choose a partition return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions; } }
public int partition(String topic, Object key, byte[] keyBytes, Object value,
byte[] valueBytes, Cluster cluster) { List<PartitionInfo> partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { int nextValue = counter.getAndIncrement(); List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic); if (availablePartitions.size() > 0) { int part = Utils.toPositive(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return Utils.toPositive(nextValue) % numPartitions; } } else { // hash the keyBytes to choose a partition return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions; } }
public int partition(String topic, Object key, byte[] keyBytes, Object value,
byte[] valueBytes, Cluster cluster) { List<PartitionInfo> partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { int nextValue = counter.getAndIncrement(); List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic); if (availablePartitions.size() > 0) { int part = Utils.toPositive(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return Utils.toPositive(nextValue) % numPartitions; } } else { // hash the keyBytes to choose a partition return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions; } }
public int partition(String topic, Object key, byte[] keyBytes, Object value,
byte[] valueBytes, Cluster cluster) { List<PartitionInfo> partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { int nextValue = counter.getAndIncrement(); List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic); if (availablePartitions.size() > 0) { int part = Utils.toPositive(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return Utils.toPositive(nextValue) % numPartitions; } } else { // hash the keyBytes to choose a partition return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions; } }
public int partition(String topic, Object key, byte[] keyBytes, Object value,
byte[] valueBytes, Cluster cluster) { List<PartitionInfo> partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { int nextValue = counter.getAndIncrement(); List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic); if (availablePartitions.size() > 0) { int part = Utils.toPositive(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return Utils.toPositive(nextValue) % numPartitions; } } else { // hash the keyBytes to choose a partition return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions; } }
public int partition(String topic, Object key, byte[] keyBytes, Object value,
byte[] valueBytes, Cluster cluster) { List<PartitionInfo> partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { int nextValue = counter.getAndIncrement(); List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic); if (availablePartitions.size() > 0) { int part = Utils.toPositive(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return Utils.toPositive(nextValue) % numPartitions; } } else { // hash the keyBytes to choose a partition return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions; } }
public int partition(String topic, Object key, byte[] keyBytes, Object value,
byte[] valueBytes, Cluster cluster) { List<PartitionInfo> partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { int nextValue = counter.getAndIncrement(); List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic); if (availablePartitions.size() > 0) { int part = Utils.toPositive(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return Utils.toPositive(nextValue) % numPartitions; } } else { // hash the keyBytes to choose a partition return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions; } }
Utils.toPositive
public static int toPositive(int number) { return number & 0x7fffffff;
}
0111 1111 1111 1111 1111 1111 1111 1111
0000 0000 0000 0000 0000 0000 0000 1010 & 0111
1111 1111 1111 1111 1111 1111 1111 = 0000 0000 0000 0000 0000 0000 0000 1010
Two’s Complement
0000 0000 0000 0000 0000 0000 0000 1010 1111 1111
1111 1111 1111 1111 1111 0101 1111 1111 1111 1111 1111 1111 1111 1010
1111 1111 1111 1111 1111 1111 1111 1010 & 0111
1111 1111 1111 1111 1111 1111 1111 = 0111 1111 1111 1111 1111 1111 1111 1010
None