Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWS CDKで"使う"GoFデザインパターン 〜実際どうなの?〜 / GoF design ...
Search
k.goto
July 11, 2023
Programming
4
1.8k
AWS CDKで"使う"GoFデザインパターン 〜実際どうなの?〜 / GoF design patterns used with AWS CDK
2023/07/12開催 JAWS-UG CDK支部 #7での発表資料です。
k.goto
July 11, 2023
Tweet
Share
More Decks by k.goto
See All by k.goto
CodePipelineのアクション統合から学ぶAWS CDKの抽象化技術 / codepipeline-actions-cdk-abstraction
gotok365
4
78
AWS CDKにおけるL2 Constructの仕組み / aws-cdk-l2-construct
gotok365
5
1k
コミュニティ駆動 AWS CDK ライブラリ「Open Constructs Library」 / community-cdk-library
gotok365
2
330
AWS CDKにおける「再利用性」を考える / aws-cdk-reusability
gotok365
7
2.8k
OSS活動のススメ / oss-activities
gotok365
4
1.1k
AWS CDKコントリビュートTIPS / aws-cdk-contribution-tips
gotok365
8
1.8k
S3バケットを高速で削除・空にするツール「cls3」 / s3-deletion-tool-cls3
gotok365
4
890
AWS CDKで コンテナイメージスキャンを行う 〜ECRとその他の方法〜 / cdk-container-image-scan
gotok365
2
1.5k
スタートアップでこそCDKが活きた〜生産性を向上できた5つの理由〜 / startup-cdk-productivity
gotok365
14
4.1k
Other Decks in Programming
See All in Programming
Youtube Lofier - Chrome拡張開発
ninikoko
0
2.4k
複雑なフォームの jotai 設計 / Designing jotai(state) for Complex Forms #layerx_frontend
izumin5210
3
780
趣味全開のAITuber開発
kokushin
0
200
サービスレベルを管理してアジャイルを加速しよう!! / slm-accelerate-agility
tomoyakitaura
1
180
AI Agents with JavaScript
slobodan
0
230
VitestのIn-Source Testingが便利
taro28
5
1.3k
Unlock the Potential of Swift Code Generation
rockname
0
250
Road to RubyKaigi: Making Tinny Chiptunes with Ruby
makicamel
4
120
音声プラットフォームのアーキテクチャ変遷から学ぶ、クラウドネイティブなバッチ処理 (20250422_CNDS2025_Batch_Architecture)
thousanda
0
170
AHC045_解説
shun_pi
0
530
スモールスタートで始めるためのLambda×モノリス(Lambdalith)
akihisaikeda
2
280
AI Coding Agent Enablement - エージェントを自走させよう
yukukotani
14
6.1k
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Agile that works and the tools we love
rasmusluckow
328
21k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
30k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.1k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.6k
KATA
mclloyd
29
14k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Building Adaptive Systems
keathley
41
2.5k
Transcript
LHPUP าͷςοΫ "84$%,ͰֶͿ (P'σβΠϯύλʔϯ ʙ࣮ࡍͲ͏ͳͷʁʙ +"846($%,ࢧ෦ ͏
ࣗݾհ LHPUP w ςοΫϦʔυɾϥʔϝϯ͖ w "84$PNNVOJUZ#VJMEFS %FW5PPMT w าͷςοΫ
ٕज़ϒϩά w ࣗ࡞"84πʔϧͷ044։ൃ w "84$%,$POUSJCVUPS ‣ $POTUSVDU)VCެ։ w 5XJUUFS!@TUFQ@UFDI ‣ LHPUP าͷςοΫ
(P'σβΠϯύλʔϯͱ w ॻ੶ʰΦϒδΣΫτࢦʹ͓͚Δ࠶ར༻ͷͨΊͷσβΠϯύλʔϯʱ ˞ ‣ ௨শʰ(P'ຊʱ ‣ (P' (BOHPG'PVS
͜ͷڞஶऀͷਓ ‣ શύλʔϯ w ݹ͔͘Β͋Δ͕ɺ"84$%,ͷ෦࣮ʹҰ෦༻͍ΒΕ͍ͯΔ ˞ʰΦϒδΣΫτࢦʹ͓͚Δ࠶ར༻ͷͨΊͷσβΠϯύλʔϯʱ ιϑτόϯΫύϒϦογϯά ஶΤʔϦώɾΨϯϚɺϥϧϑɾδϣϯιϯɺϦνϟʔυɾϔϧϜɺδϣϯɾϒϦγσΟʔε ༁ຊҐాਅҰ ٢ాथ
(P'σβΠϯύλʔϯͱ IUUQTEPDTBXTBNB[PODPNKB@KQQSFTDSJQUJWFHVJEBODFMBUFTUCFTUQSBDUJDFTDELUZQFTDSJQUJBDSFVTBCMFQBUUFSOTCFTUQSBDUJDFTIUNM 5ZQF4DSJQUͰ$%,Λॻ͘ࡍͷϕετϓϥΫςΟεͱͯ͠ ެࣜυΩϡϝϯτͰ(P'σβΠϯύλʔϯ͕հ
"84%FW%BZ5PLZP
"84$%,ͰֶͿ(P'σβΠϯύλʔϯ ʙ*B$ʹίʔυઃܭʙ
"84$%,ͰֶͿ(P'σβΠϯύλʔϯ ʙ*B$ʹίʔυઃܭʙ ͏ ʙ࣮ࡍͲ͏ͳͷʁʙ
"84$%,ͷཧɾݱ࣮ w ཧɿJGจGPSจશ෦ແ͠ʂ w ݱ࣮ɿڥࠩҟΛ࣮ݱ͠ͳ͍ͱ͍͚ͳ͍͜ͱʹɾɾɾ ‣ ֤։ൃऀͷڥͰ$IBUCPU TMBDLνϟϯωϧ ɺ8"'ɺ֎ܗࢹ࡞Βͳ͍ ‣
͑ͬɺͦͷڥ͚ͩ*1੍ݶͰ͔͢ʂʁ ݅ذ JGจ ͕ൃੜʂ ίʔυͷෳࡶԽɾංେԽʂ
͑ʁ (P'σβΠϯύλʔϯͬͯ $%,ʹ͑ΔΜͰ͔͢ʁ
$%,º(P'σβΠϯύλʔϯͷϝϦοτ ίʔσΟϯάʹ͓͚Δઃܭ͕͖ࣝɺΞϓϦ։ൃʹੜ͔ͤΔ $%,ίʔυΛޮΑ͘ॻ͚Δ ‣ ݅ذ͕ݮΔ ‣ ݟ௨͕͠ྑ͘ͳΓϑΝΠϧ͕ංେԽ͠ͳ͍ ˠཧղ༰қੑɾ֦ுੑ࠶ར༻ੑͷ্ 㲈อकੑͷ্ $%,ͬͯԿΛ࡞͍ͬͯΔͷ͔Θ͔ΓͮΒ͍͕࣌͋ͬͯɾɾɾ
Πϯελϯεੜͯ͠มʹೖΕͯϝιουݺΜͰذͯ͠ʜ
$%,º(P'σβΠϯύλʔϯͷσϝϦοτ ίʔσΟϯάઃܭͷ͕ࣝ͋Δఔඞཁ ಠࣗ࿏ઢͰ͋Δ ࣮༻ྫ͕গͳ͍ͷͰ ‣ $%,ͷతʮΠϯϑϥߏஙఆٛʯએݴతɾ੩తͳهड़έʔε͕ଟ͍ ޮੑΑΓγϯϓϧʹఆ͚ٛͩฒ͍ͨ ‣
ʮΓա͗ʯʹͳΔՄೳੑ ·ʙͨมͳ͜ͱͯ͠ɺແۤɾΦϨΦϨʹͳͬͪΌ͏ΜͰ͠ΐʁ
(P'σβΠϯύλʔϯιϑτΣΞֶ ܾͯ͠ແۤɾΦϨΦϨͰͳ͍ ύλʔϯɿܕɼ༷ࣜ σβΠϯɿઃܭ
"84$%,ֵ৽తͳ*B$ ैདྷͷ*B$ʹͳ͍ ༷ʑͳՄೳੑΛൿΊ͍ͯΔ
$%,º(P'σβΠϯύλʔϯͷՄೳੑ w ΞϓϦΠϯϑϥͷ֞ࠜΛ͑ͯΈΔྑ͍͖͔͚ͬʹͳΔ͔͠Εͳ͍ ‣ ʮఆٛΛॻ͍͍ͯΔʯ͔ΒʮίʔσΟϯάΛ͍ͯ͠Δʯͱ͍͏࣮ײͷมԽ ‣ ίʔσΟϯάָ͕͘͠ͳΔɾ։ൃʹڵຯ͕ग़Δ͔͠Εͳ͍ w ࣍ୈͰίʔυΛݟͨ͘͢͠ΓɺอकίετΛԼ͛ΒΕΔ͔͠Εͳ͍ ‣
ೝෛՙ͕Լ͕ͬͨΓ ‣ มߋ࣌ͷίʔυमਖ਼ྔ͕ݮͬͨΓ ैདྷͷΠϯϑϥఆٛͷʹनΘΕ͗͢ͳ͍͍ͯ͘Μ͡Όͳ͍͔ʁ
$%,º(P'σβΠϯύλʔϯͷՄೳੑ w ϧʔϧΛܾΊͯΠϯϑϥఆ͔ٛΒҳ͠ա͗ͳ͍Α͏ʹ w ैདྷͷએݴతͳΠϯϑϥఆٛΛ͑Δ෦ɺϓϩάϥϛϯάݴޠͳΒͰ ͷࣗಈςετͰΧόʔ ‣ 6OJU5FTU 4OBQTIPU5FTU
'JOFHSBJOFE"TTFSUJPOT5FTU 7BMJEBUJPO5FTU ‣ *OUFHSBUJPO5FTU JOUFHUFTUTBMQIB
$%,ͰͷΦεεϝύλʔϯબ ᶃ $PNQPTJUFύλʔϯ ᶄ 5FNQMBUF.FUIPEύλʔϯ ᶅ "CTUSBDU'BDUPSZύλʔϯ $%,ͳΒͰͷπϦʔߏ Λ׆͔ͯ͠ޮԽ ڥؒ
EFWcQSPE ͷࠩҟΛ࣮ݱ ɾڥ͝ͱͷݟ௨͕͠ྑ͘ͳΔ ɾ݅ذΛݮΒͤΔ ɾڞ௨෦ڞ௨Խͯ͠ޮతʹ ͓·͚ɿ'BDBEFύλʔϯ$POTUSVDU
ࢀߟɿᶃ$PNQPTJUFύλʔϯ
ࢀߟɿᶄ5FNQMBUF.FUIPEύλʔϯ
ࢀߟɿᶄ5FNQMBUF.FUIPEύλʔϯ ڥ͝ͱʹॊೈʹόϦσʔγϣϯ༰Λม͑Δʂ ݅ذ࠷খʂ
ࢀߟɿᶅ"CTUSBDU'BDUPSZύλʔϯ
ࢀߟɿᶅ"CTUSBDU'BDUPSZύλʔϯ
ࢀߟɿᶅ"CTUSBDU'BDUPSZύλʔϯ ڥ͝ͱʹॊೈʹߏஙϦιʔεΛม͑Δʂ ݅ذ࠷খʂ
$%,෦ͰΘΕ͍ͯΔύλʔϯ ᶃ 4JOHMFUPOύλʔϯ ‣ 4JOHMFUPO'VODUJPOίϯετϥΫτ ᶄ 4USBUFHZύλʔϯ ‣ 7BMJEBUJPOػೳ /PEFWBMJEBUF
ᶅ 7JTJUPSύλʔϯ ‣ "TQFDUTػೳ ৄࡉ"84%FW%BZ5PLZP ʰ"84$%,ͰֶͿ(P'σβΠϯύλʔϯ ʙ*B$ʹίʔυઃܭʙʱ ొஃࢿྉʹͯʂ ˞ຊࢿྉ࠷ޙʹϦϯΫهࡌ
࠷ޙʹ w "84$%,ͷՄೳੑແݶେ ‣ ৽͍͠ɾࣗ༝͕ߴ͍ނʹϕετϓϥΫςΟε͕ݻ·Γ͖͍ͬͯͳ͍ ͦͦ͜ͷ(P'σβΠϯύλʔϯద༻Έ͍ͨʹɺ·ͩྫ͕ग़͍ͯͳ͔ͬͨΓ ‣ πʔϧͱͯ͠ΤϯδχΞͱͯ͠৳ͼ͠Ζ͕͋Δʂ
$%,ͷ৽ͨͳ͍ํΛฤΈग़͢νϟϯεʂ ීஈΠϯϑϥدΓͷਓΞϓϦ։ൃɾίʔσΟϯάʹ৮ΕͯΈΔྑ͍ػձ͔ʂ "84$%,Λ͍͍ͯ͜͠͏ʂ ༻๏ɾ༻ྔकͬͯͶ (P' ͋Γ͔ʁ
ࢀߟɿ"84%FW%BZొஃࢿྉɾ(JU)VC "84%FW%BZ5PLZP ొஃࢿྉ ࠨɿIUUQTTQFBLFSEFDLDPNHPUPLBXTEFWEBZDELHPGEFTJHOQBUUFSOT $%,º(P'ίʔυ࣮ྫɾΫϥεਤ (JU)VC ӈɿIUUQTHJUIVCDPNHPUPLDELHPGEFTJHOQBUUFSO
એɿࣗ࡞"84πʔϧ044 ʲEFMTUBDLʳ"84$MPVE'PSNBUJPOελοΫڧ੍আπʔϧ ‣ IUUQTHPUPLIBUFOBCMPHDPNFOUSZEFMTUBDL ʲDMTʳ4όέοτߴআɾۭʹ͢Δπʔϧ όʔδϣχϯάରԠ ‣ IUUQTHPUPLIBUFOBCMPHDPNFOUSZDMT ʲMBNWFSʳ-BNCEBϥϯλΠϜόʔδϣϯݕࡧπʔϧ
Ϧʔδϣϯԣஅ ‣ IUUQTHPUPLIBUFOBCMPHDPNFOUSZMBNWFS
5IBOL:PV LHPUP าͷςοΫ