Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
偏光で理解する重ね合わせ状態
Search
gyu-don
May 28, 2018
Technology
0
1.4k
偏光で理解する重ね合わせ状態
OpenQL LT会の15分LTで発表させていただきました。量子コンピュータの基本である重ね合わせ状態を、古典光学の偏光を使って理解しよう、という試みです。
gyu-don
May 28, 2018
Tweet
Share
More Decks by gyu-don
See All by gyu-don
フロントエンド初心者がサクッとReactに入門する
gyudon
0
190
任意の2 qubitユニタリのゲートでの実装〜KAK分解を使って〜
gyudon
0
760
【Blueqat Summit】Re:ゼロから始める量子プログラミング
gyudon
0
660
Shorのアルゴリズム
gyudon
23
7.7k
Blueqat♥量子化学
gyudon
0
1.2k
arXivQurationのご紹介
gyudon
0
190
Other Decks in Technology
See All in Technology
「隙間家具OSS」に至る道/Fujiwara Tech Conference 2025
fujiwara3
7
6.5k
iPadOS18でフローティングタブバーを解除してみた
sansantech
PRO
1
140
ゼロからわかる!!AWSの構成図を書いてみようワークショップ 問題&解答解説 #デッカイギ #羽田デッカイギおつ
_mossann_t
0
1.5k
駆け出しリーダーとしての第一歩〜開発チームとの新しい関わり方〜 / Beginning Journey as Team Leader
kaonavi
0
120
#TRG24 / David Cuartielles / Post Open Source
tarugoconf
0
580
PaaSの歴史と、 アプリケーションプラットフォームのこれから
jacopen
7
1.5k
シフトライトなテスト活動を適切に行うことで、無理な開発をせず、過剰にテストせず、顧客をビックリさせないプロダクトを作り上げているお話 #RSGT2025 / Shift Right
nihonbuson
3
2.1k
ドメイン駆動設計の実践により事業の成長スピードと保守性を両立するショッピングクーポン
lycorptech_jp
PRO
12
2k
Godot Engineについて調べてみた
unsoluble_sugar
0
400
20250116_自部署内でAmazon Nova体験会をやってみた話
riz3f7
1
100
Oracle Exadata Database Service(Dedicated Infrastructure):サービス概要のご紹介
oracle4engineer
PRO
0
12k
Alignment and Autonomy in Cybozu - 300人の開発組織でアラインメントと自律性を両立させるアジャイルな組織運営 / RSGT2025
ama_ch
1
2.4k
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
Git: the NoSQL Database
bkeepers
PRO
427
64k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.4k
Speed Design
sergeychernyshev
25
740
Optimising Largest Contentful Paint
csswizardry
33
3k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.7k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Transcript
偏光で理解する重ね合わせ状態 Qiita/GitHub: gyu-don OpenQL 量子コンピューターについて語ろうLT大会 2018/05/28
みなさん、重ね合わせ状態って、理解してますか? 2
∣0⟩ + ∣1⟩ ∣0⟩ − ∣1⟩ 位相が違うってどういうこと? 3
∣0⟩と∣1⟩の重ね合わせ状態 ∣0⟩か∣1⟩かどちらか分からない状態 この2つの違いは? 4
本発表のターゲット層 こんな人。 見たことある → α 0 + β 1 重ね合わせ
→ なんとなく理解してるつもり 位相 → 実はよく分かってない 本発表の目的 光の偏光(古典光学)をテーマに、重ね合わせを理解する ∣ ⟩ ∣ ⟩ 5
横波と偏光 出典: https://byjus.com/physics/characteristics-of-em-waves/ 電場(青い方)の方向を「偏光」と呼ぶ決まりになってる。 6
電場 = E e (E e + E e )
ただし、(E e ) + (E e ) = 1 行列で書き直すと、 = E e ↑ ↑ 波っぽい部分 偏光成分 波っぽい部分は忘れて、偏光成分のみを書くことにする。 E⃗ 0 i(kz−ωt) x iϕx x⃗ y iϕy y ⃗ x ϕx 2 y ϕy 2 E⃗ 0 i(kz−ωt) ( E e x iϕx E e y iϕy ) 7
偏光とケット記法 xとy ⇒ 水平(Horizontal)偏光と垂直(Vertical)偏光。 なので、わかりやすく名前をつけてみる。 ∣H⟩ = , ∣V ⟩
= そしたら = E e ∣H⟩ + E e ∣V ⟩ ( E e x iϕx E e y iϕy ) ( 1 0 ) ( 0 1 ) ( E e x iϕx E e y iϕy ) x iϕx y iϕy 8
偏光とケット記法 xとy ⇒ 水平(Horizontal)偏光と垂直(Vertical)偏光。 なので、わかりやすく名前をつけてみる。 ∣0⟩ = , ∣1⟩ =
そしたら = E e ∣0⟩ + E e ∣1⟩ ( E e x iϕx E e y iϕy ) ( 1 0 ) ( 0 1 ) ( E e x iϕx E e y iϕy ) x iϕx y iϕy 9
偏光板 特定の方向の偏光のみを通す板 出典: 旭化成 http://www.asahi-kasei.co.jp/ake- mate/wgf/jp/dl/pdf/170401_WGF_introduction.pdf 10
偏光板 特定の方向の偏光のみを通す板 出典: Wikipedia 11
出典: うさぎ屋 https://store.shopping.yahoo.co.jp/usagi-shop/pl- 001.html 12
出典: うさぎ屋 https://store.shopping.yahoo.co.jp/usagi-shop/pl- 001.html 13
出典: うさぎ屋 https://store.shopping.yahoo.co.jp/usagi-shop/pl- 001.html 14
ここで問題です 直交している偏光板の間に、斜め向けにした偏光板を入れると? 15
16
17
偏光はベクトル! 18
3枚の偏光板問題をベクトルで理解 1枚目: 横偏光の光のみを通す 2枚目: 横偏光の光のうち、斜め成分の光のみを通す 3枚目: 斜め偏光の光のうち、縦成分の光のみを通す 19
3枚の偏光板 ベクトル表記 1枚目通過後: 2枚目通過後: 3枚目通過後: ( 1 0 ) 2 1
( 1 1 ) 2 1 ( 0 1 ) 20
3枚の偏光板 ブラケット記法 1枚目通過後: ∣H⟩ 2枚目通過後: (∣H⟩ + ∣V ⟩) 3枚目通過後: ∣V
⟩ 2 1 2 1 21
ここまでのまとめ 光の電場成分の方向 = 偏光 偏光はベクトルで表すことができる 3枚の偏光板を通すと? 偏光をベクトルとして考えることで理解できる ベクトルの成分分解 22
位相について 23
∣H⟩と∣V ⟩ 24
∣H⟩ + ∣V ⟩ ∣H⟩ − ∣V ⟩ √ 2
1 √2 1 √ 2 1 √2 1 25
ちなみに、 位相差は複素数でもいいんです i = e の数式、覚えていますか? 位相がiずれる: cos→sin, sin→cos になる。
i 2 π 26
∣H⟩ + ∣V ⟩ ∣H⟩ − ∣V ⟩ √ 2
1 √2 i √ 2 1 √2 i 27
ここまでのまとめ 偏光はベクトルで表すことができる 斜め偏光は縦偏光と横偏光の重ね合わせ状態 円偏光も縦偏光と横偏光の重ね合わせ状態 これらは位相によって変わる 28
(∣H⟩+∣V ⟩) ∣H⟩か∣V ⟩か、どちらか分からない状態 この2つは物理的に同じ意味か? √ 2 1 29
(∣H⟩+∣V ⟩) 斜め向けの偏光板を100%通る ∣H⟩も∣V ⟩も斜め向けの偏光板で一部減衰する ⇒∣H⟩か∣V ⟩かどちらか分からない状態は減衰する √ 2 1
30
∣H⟩か∣V ⟩かどちらか分からない状態 実は、α∣H⟩ + β∣V ⟩の式では書き表せない 31
密度行列 ∣Ψ⟩ = α∣H⟩ + β∣V ⟩ ⇓ 行列表記: ∣Ψ⟩⟨Ψ∣
= (α∣H⟩ + β∣V ⟩)(α ⟨H∣ + β ⟨V ∣) ∗ ∗ = α ∣H⟩⟨H∣ + αβ ∣H⟩⟨V ∣ + α β∣V ⟩⟨H∣ + β ∣V ⟩⟨V ∣ 2 ∗ ∗ 2 ( ∣α∣2 α β ∗ αβ∗ ∣β∣2 ) 32
密度行列 (∣H⟩ + ∣V ⟩) ⇓ (∣H⟩⟨H∣ + ∣H⟩⟨V ∣
+ ∣V ⟩⟨H∣ + ∣V ⟩⟨V ∣)/2 = √ 2 1 ( 1/2 1/2 1/2 1/2 ) 33
密度行列 ∣H⟩か∣V ⟩か分からないが、どちらである確率も1/2 ⇓ ∣H⟩⟨H∣ + ∣V ⟩⟨V ∣ =
2 1 2 1 ( 1/2 0 0 1/2 ) 34
(∣H⟩+∣V ⟩) 密度行列: ∣H⟩か∣V ⟩か、どちらか分からない状態 密度行列: 違う密度行列に!! √ 2 1
( 1/2 1/2 1/2 1/2 ) ( 1/2 0 0 1/2 ) 35
まとめ 縦偏光と横偏光で重ね合わせを理解した 「重ね合わせ状態」はベクトル! 位相によって斜め偏光になったり円偏光になったり! 「縦と横の重ね合わせ」と「縦か横か分からない状態」 偏光板を通してみたら異なる物理現象が起こる! 「密度行列」で表してみたら異なる行列になる! 物理的に異なる状態であり、数式の上でも区別ができる 36