Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning勉強会 逆伝播の仕組み
Search
株式会社Jurabi
October 01, 2024
Programming
0
31
Deep Learning勉強会 逆伝播の仕組み
誤差逆伝播法の概要に関する説明です。
Deep Learningの社内勉強会の発表資料
株式会社Jurabi
October 01, 2024
Tweet
Share
More Decks by 株式会社Jurabi
See All by 株式会社Jurabi
DDDモデリング勉強会 #6
jurabi
0
36
DDDモデリング勉強会 #7
jurabi
0
15
DDDモデリング勉強会 #9
jurabi
0
30
RDBの世界をぬりかえていくモデルグラフDB〜truncus graphによるモデルファースト開発〜
jurabi
0
370
Other Decks in Programming
See All in Programming
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
240
perlをWebAssembly上で動かすと何が嬉しいの??? / Where does Perl-on-Wasm actually make sense?
mackee
0
200
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
27k
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
600
AIコーディングエージェント(NotebookLM)
kondai24
0
240
生成AIを利用するだけでなく、投資できる組織へ
pospome
2
410
Combinatorial Interview Problems with Backtracking Solutions - From Imperative Procedural Programming to Declarative Functional Programming - Part 2
philipschwarz
PRO
0
120
Basic Architectures
denyspoltorak
0
130
チームをチームにするEM
hitode909
0
400
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
190
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
310
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
150
Featured
See All Featured
WENDY [Excerpt]
tessaabrams
9
35k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
120
Darren the Foodie - Storyboard
khoart
PRO
0
2k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
How Software Deployment tools have changed in the past 20 years
geshan
0
30k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
79
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
We Have a Design System, Now What?
morganepeng
54
7.9k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
37
Game over? The fight for quality and originality in the time of robots
wayneb77
1
67
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
1
210
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
Transcript
Deep Learning勉強会 逆伝播の仕組み 2016/10/14 (金) 19:00 – 21:00
アジェンダ • 復習 • 確率的勾配降下法に必要なものを算出する • 誤差逆伝播法 • 誤差逆伝播法の式からわかること •
誤差逆伝播法を一気にやる • プログラミング 2
復習(パーセプトロン) 3 ・ ・ ・ ・ ・ ・ ・ ・
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ :ニューロンの活性 :ニューロンの出力 :ニューロンの入力の重み :ニューロンのバイアス :ネットワークのコスト関数 ベクトルで表現
復習(確率的勾配降下法) 4 これを求めるのが誤差逆伝播法 わかりやすくするために、ニューロンレベルで書くと 重みの更新: バイアスの更新: (N:ミニバッチ内の訓練データの数)
確率的勾配降下法に必要なものを算出する 5 と置きかえると これを第l層のj番目のニューロンの誤差とよぶ これが計算できればOK! 次の層の誤差がわかれば計算できる(誤差の逆伝播)。出力層までさかのぼると・・・ これはフィードフォワードの結果から計算できる!
誤差逆伝播法 1. 訓練データのセット(ミニバッチ)を入力 2. ミニバッチ内の各訓練データ に対して、以下のステップを行う (1) フィードフォワード (2) 出力層の誤差を計算
(3) 誤差を逆伝播し、各層の誤差を計算 3. 勾配降下法で重み、バイアスを更新する 6
誤差逆伝播法の式からわかること 7 1. 入力( )が小さいと、その入力の重みの学習は遅い 2. 誤差( )が小さいと、そのニューロンへの入力の重みの学習は遅い 誤差が小さくなるのはどんなとき? →
ニューロンの活性( )が大きい、または小さい時には となる 2. ニューロンの活性が大きい、または小さいと、 そのニューロンへの入力の重みの学習は遅い
誤差逆伝播法を一気にやる 1. 訓練データのセット(ミニバッチ)を入力し、行列化する 2. ミニバッチ に対して、以下のステップを行う (1) フィードフォワード (2) 出力層の誤差を計算
(3) 誤差を逆伝播し、各層の誤差を計算 3. 勾配降下法で重み、バイアスを更新する 8
プログラミング 9 <課題> network.pyを行列を使ったアルゴリズムに書き換えてください