Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AutoML 使ってみた
Search
konumaru
August 12, 2020
Technology
0
180
AutoML 使ってみた
GCP AutoML を使って、App Store Review の感情分析をしてみた。
konumaru
August 12, 2020
Tweet
Share
More Decks by konumaru
See All by konumaru
Cursor × Marp 勉強会
konumaru
3
1.3k
レコメンドエンジンを Figma で爆速 UX リサーチ
konumaru
0
8.3k
main.pdf
konumaru
0
290
7日で学んだ強化学習
konumaru
0
250
Other Decks in Technology
See All in Technology
adk-samples に学ぶデータ分析 LLM エージェント開発
na0
3
520
未回答質問の回答一覧 / 開発をリードする品質保証 QAエンジニアと開発者の未来を考える-Findy Online Conference -
findy_eventslides
0
400
組織の“見えない壁”を越えよ!エンタープライズシフトに必須な3つのPMの「在り方」変革 #pmconf2025
masakazu178
1
800
AI時代の戦略的アーキテクチャ 〜Adaptable AI をアーキテクチャで実現する〜 / Enabling Adaptable AI Through Strategic Architecture
bitkey
PRO
15
9.5k
AWS re:Invent 2025 で頻出の 生成 AI サービスをおさらい
komakichi
3
210
リアーキテクティングのその先へ 〜品質と開発生産性の壁を越えるプラットフォーム戦略〜 / architecture-con2025
visional_engineering_and_design
0
6.3k
個人から巡るAI疲れと組織としてできること - AI疲れをふっとばせ。エンジニアのAI疲れ治療法 ショートセッション -
kikuchikakeru
4
1.9k
pmconf 2025 大阪「生成AI時代に未来を切り開くためのプロダクト戦略:圧倒的生産性を実現するためのプロダクトサイクロン」 / The Product Cyclone for Outstanding Productivity
yamamuteki
3
2.4k
AI時代のインシデント対応 〜時代を切り抜ける、組織アーキテクチャ〜
jacopen
4
110
ECS組み込みのBlue/Greenデプロイを動かしてELB側の動きを観察してみる
yuki_ink
3
410
膨大なデータをどうさばく? Java × MQで作るPub/Subアーキテクチャ
zenta
0
120
メッセージ駆動が可能にする結合の最適化
j5ik2o
9
1.5k
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
186
22k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Embracing the Ebb and Flow
colly
88
4.9k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.1k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
45
How STYLIGHT went responsive
nonsquared
100
5.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Transcript
GCP Natural Language AutoML 触ってみた 1
ToC MLプロジェクトのプロセス MLプロジェクトににおける課題 なぜAutoMLをやるのか AutoML の紹介(202008時点) 先⾏事例 やったこと まとめ 2
MLプロジェクトのプロセス 企画 机上検証 実証実験 システム開発 システム運⽤ だいたいこんな感じ 3
MLプロジェクトにおける課題(の⼀部) 主に机上検証・実証実験における課題 データの質・量がよろしくない コードの品質が悪い 適切なモデルをつくることが難しい 4
なぜAutoMLをやるのか データの前処理やクレンジングを担ってくれるのか コードの質を気にせずにモデルをつくることができるのか 適切なモデルというの確かめることができるか これらを AutoML が解決できるのかを確かめる。 5
AutoML の紹介(202008時点) AutoML Vision(画像分析) AutoML Video Intelligence(動画分析) AutoML Natural Language(⾃然⾔語処理)
<- 今回はこれやる AutoML Translation(翻訳) AutoML Tables(構造化データの分析) 6
先⾏事例 画像分類 LIFULL, 物件画像の分類 cookpad, 商品画像の分類 その他事例 https://cloud.google.com/automl?hl=ja , etc
7
やったこと GCP Natural Language AutoML を使う データの取得 データの加⼯ AutoMLにデータを投⼊ データが読み込まれる
8
GCP Natural Language AutoML を使う エンティティの抽出 コンテンツ分類 感情分析 <- 今回はこれやる
9
データの取得 右の画像のようなレビューデータ をGASでクローリング Spredsheet に保存 全部で22アプリのレビューデータ を取得 ジャンルは、EC, Game, ⼈材,
漫画 などなど 10
データのラベル付け 今回はレビューデータを使うので、あらかじめ星が付いてる。 したがって、ユーザーが付けた星を正とする。 ラベルデータがないなら ⾃分でラベルを付ける。 AutoML Natural Language UI(Data Labeling)などを活⽤する。
AI Platform Data Labeling Service を使⽤して⼈間のラベル付け担当者に依頼する。 11
データの加⼯ 収取したレビューデータをAutoML が望む形に加⼯する必要がある。 いくつかある中で、今回は右のよ うなフォーマットを選択。 ✗: 1 label - 1
file ◦: 1 record - 1 file Source: https://github.com/konumaru/sentime nt_analysis/blob/master/main.py 12
データの投⼊(Items) 13
Train ワンクリックで実⾏できる。 学習⽤データ・評価⽤データをよ しなに分割してくれる。 学習は何度も実⾏でき、モデルご とにUnique_IDが割り当てられる。 評価⽤データにおける精度を確認 できる。 学習⽤データの精度がみれないの で、過学習の判断ができない。
14
Evaluate 評価⽤データの評価結果が⾒れ る。 評価⽤データのラベルごとの数が わかる。 評価結果では、Confusion Matrix もみることができる。 15
Test & Use 簡易的に未知のデータを使って予 測することができる。 勝⼿にREST API も作ってくれる。 上記を呼べるようなpythonスクリ プトの例も出してくれる。
16
Pros / Cons 17
Pros 決まったデータさえあれば予測モデルからAPIまでつくれる。 GUIでデータのクレンジングができる。 GUIで予測結果を探索できる。インタラクティブで楽しい。 (良し悪しはあるが)学習・評価データを勝⼿に分割してくれる。 18
Cons 問題設定が限られるので使い所が難しい データの前処理が必要なので no code という訳にはいかない。 データの前処理が結構たいへん(ここが⼀番Autoになってほしいな...) ⾃作する場合よりもモデルの解釈が難しい。 過学習が判断できない。 19
まとめ 基本的には便利 机上検証・実証実験における課題のうち、コードにまつわる課題は解決されている。 ⼀⽅で、 使い所が限られる。 モデルの解釈・分析が難しい。 データの前処理は相変わらず⼤変。 ⾊々あるが、 今後⼤いに期待できるツールになるはず。 20
おまけ:本当に感情分析するなら 感情というあいまいな情報を抽出しようという試みなのでどこかで妥協が必要 機械的な分析を諦め、定性分析を⾏う -> tensorflow embedding 機械的な分析を諦められないなら -> 分散表現を獲得し、k-meansなどでクラスタリングした後、スコアリングすると か?
(しかし、ものすごくうまく動くことは期待できないと思う) 21