Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
組織とデータ分析/統計的仮説検定 / Organization and Data Analys...
Search
Kenji Saito
PRO
November 30, 2023
Business
1
140
組織とデータ分析/統計的仮説検定 / Organization and Data Analysis, and Statistical Hypothesis Testing
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬の第1-2回で使用したスライドです。
Kenji Saito
PRO
November 30, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
01 を動かす〜音声で対話できる自動化されたアシスタント / Running 01 - Automated Assistant with Voice Interaction
ks91
PRO
0
3
AGI (Artificial General Intelligence) の論点 / AGI (Artificial General Intelligence) Issues
ks91
PRO
0
2
Open Interpreter を動かす 〜 自動化されたアシスタントの誕生 / Running Open Interpreter - The Birth of an Automated Assistant
ks91
PRO
0
7
Linux 仮想マシンを動かす(Windows 編)(Mac 編) / Running a Linux Virtual Machine (Windows Edition) (Mac Edition)
ks91
PRO
0
13
(メタ・) ネイチャーポジティブと物質・エネルギーの循環経済 / Being (Meta-)Nature Positive and the Circular Economy of Materials and Energy
ks91
PRO
0
3
対話による知の拡張 / Extending Knowledge Through Dialogue
ks91
PRO
0
35
プロンプトに対する攻撃と対策 / Attacks Against Prompts and Countermeasures
ks91
PRO
0
34
傾聴の理論 〜 傾聴する相棒の創り方 / Theory of Listening and How to Create a Listening Partner
ks91
PRO
0
32
試作とデモンストレーション / Prototyping and Demonstrations
ks91
PRO
0
140
Other Decks in Business
See All in Business
GMOフィナンシャルHD 会社紹介資料
gmofh_hr_team
0
47k
HATALUCK company profile
hataluck
0
680
株式会社アーリーリフレクション - Culture Deck
earlyref
0
370
よくわからないことが多い場合の計画づくり(アジャイルな計画づくり)
yohhatu
0
120
NotebookLM + Agentspace を使った(開発)体験
satohjohn
1
530
ザ・スタンプラリー - サービス紹介・実績 資料
fujiyamayuta
1
40k
VISASQ: ABOUT DEV TEAM
eikohashiba
3
27k
新しいAI体験を生み出すための v0プロトタイプ駆動型開発
inagakikay
0
1.2k
Nstock 採用資料 / We are hiring
nstock
28
300k
「仮説行動」で学んだ、仮説を深め ていくための方法
yudai00
7
1.7k
良いチームに憧れ苦悩し続ける中で実感した3つの要素 / Three things to be a good team
ewa
5
880
OJTはキミに決めた!! ~ その覚悟で、チームが変わる ~
natty_natty254
0
200
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
693
190k
Designing for Performance
lara
608
69k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.7k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
41
2.3k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.7k
Building Adaptive Systems
keathley
41
2.5k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Rails Girls Zürich Keynote
gr2m
94
13k
Transcript
generated by Stable Diffusion XL v1.0 2023 1-2 (WBS) 2023
1-2 — 2023-11-30 – p.1/36
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter Discord . . . Discord 2023 1-2 — 2023-11-30
– p.2/36
( ) ( ) ( ) SFC ( ) CSO
(Chief Science Officer) 1993 ( ) 2006 ( ) SFC 23 P2P (Peer-to-Peer) 2011 ( ) 2018 2019 VR 2021.9 & VR 2022.3 2023 AI VR&RPG 2023.5 “Don’t Be So Serious” VOXEL 2023.7 DAZE 2023 In Maker Faire Tokyo 2023 → ( ) 2023 1-2 — 2023-11-30 – p.3/36
Dropbox Dropbox ( ) 2023 1-2 — 2023-11-30 – p.4/36
(B A ) 1 ( ) 2 (Wilcoxon-Mann-Whitney ) 2023
1-2 — 2023-11-30 – p.5/36
R 2023 1-2 — 2023-11-30 – p.6/36
[ ] , (2022) R R ( ) R 2023
1-2 — 2023-11-30 – p.7/36
( ) 1 11 30 • 2 11 30 (B
A ) • 3 12 7 4 12 7 5 12 14 6 12 14 t 7 12 21 2 ( ) t 8 12 21 2 ( ) t 9 1 11 P 10 1 11 11 1 18 12 1 18 13 1 25 14 1 25 W-IOI 2023 1-2 — 2023-11-30 – p.8/36
( 20 ) 1 • 2 R • 3 •
4 • 5 6 ( ) 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/14 ) / (2 ) OK / 2023 1-2 — 2023-11-30 – p.9/36
. . . . . . ( ) ( 20
×(14+1) ) 2023 1-2 — 2023-11-30 – p.10/36
(2 )(160 ) (10∼20 ) ( ) and/or 1 (80
) 1 Q & A & (30∼40 ) (30∼40 ) 2023 1-2 — 2023-11-30 – p.11/36
Moodle ( Q&A ) ( ) Discord ( ) ←
( ) 2023 1-2 — 2023-11-30 – p.12/36
( ) A4 2 2 (Overleaf ) L ATEX PDF
( ) 2023 1-2 — 2023-11-30 – p.13/36
+ + [ ] R , (2008) R 2023 1-2
— 2023-11-30 – p.14/36
2023 1-2 — 2023-11-30 – p.15/36
= ⇒ (1) (2) (3) = ⇒ ( ) (
(2)) = ⇒ ( ) ( ) AI 2023 1-2 — 2023-11-30 – p.16/36
(observation) (sample) (random variable) (probability distribution) (population) (simple random sampling)
( )( 2 t , , ) 2 ( , ) 2023 1-2 — 2023-11-30 – p.17/36
(B A ) 1 ( ) 2 (Wilcoxon-Mann-Whitney ) 2023
1-2 — 2023-11-30 – p.18/36
1 ( ) P(X = x) = n C x
· px · (1 − p)n−x E[X] = np (1) (null hypothesis) H0 (2) (test statistic) ( x ) (3) H0 (null distribution) (4) (rejection region) ( ; 5% 1%) · (significance level) (5) ( H0 ) 2023 1-2 — 2023-11-30 – p.19/36
B ( p.47) RStudio R n C x ‘choose(n,x)’ n
= 18, x = 0 . . . choose(18,0)×0.50 × 0.518 = choose(18,0)×0.518 ( ) ⇒ ( ) 3 : : : 2023 1-2 — 2023-11-30 – p.20/36
R ( B)(1/2) — R n <- 18 # p
<- 0.5 # <- c() # ( ) # x 0 for (x in 0:n) { # <- c( , choose(n,x)*p^x*(1-p)^(n-x)) } halfp <- 0 # ( 0 1) ( ) 2023 1-2 — 2023-11-30 – p.21/36
R ( B)(2/2) — R # x 0 ( )
for (x in 0:n) { # 0.025 if (halfp + [x+1] > 0.025) { break } halfp <- halfp + [x+1] # } # color <- rep(c("red"), x) # rep 2 color <- c(color, rep(c("black"), n + 1 - x*2), color) <- 0:n # x # plot (lwd ) plot( , , type="h", lwd=3, col=color) 2023 1-2 — 2023-11-30 – p.22/36
0 5 10 15 0.00 0.05 0.10 0.15 ேᩘ ☜⋡
2023 1-2 — 2023-11-30 – p.23/36
R > binom.test(14, n=18, p=0.5) p-value (P )( 9 )
0.05 ↑ 2023 1-2 — 2023-11-30 – p.24/36
2 (Wilcoxon-Mann-Whitney ) WMW ( ) A B A B
( ) (2) U (U ) · U = min(nAnB + 1 2 nA (nA + 1) − RA, nAnB + 1 2 nB (nB + 1) − RB ) (4) ((3) ) U0.05 (5) U U0.05 2023 1-2 — 2023-11-30 – p.25/36
D ( p.70) RStudio . . . 2023 1-2 —
2023-11-30 – p.26/36
R ( D)(1/2) — GPT ChatGPT (GPT-4) R ( )
1 ( ) ⇒ GPT-4 (1/2) # calculate_rank_sum <- function(sample1, sample2) { # combined_samples <- c(sample1, sample2) sample_group <- c(rep("sample1", length(sample1)), rep("sample2", length(sample2))) # ranks <- rank(combined_samples) 2023 1-2 — 2023-11-30 – p.27/36
R ( D)(2/2) — GPT ⇒ GPT-4 (2/2) # df
<- data.frame(value = combined_samples, group = sample_group, rank = ranks) # rank_sum_sample1 <- sum(df[df$group == "sample1", "rank"]) rank_sum_sample2 <- sum(df[df$group == "sample2", "rank"]) return(list(sample1_rank_sum = rank_sum_sample1, sample2_rank_sum = rank_sum_sample2)) } # sample1 <- c(3, 1, 4) sample2 <- c(2, 5, 6) # calculate_rank_sum(sample1, sample2) 2023 1-2 — 2023-11-30 – p.28/36
GPT . . . GPT-4 . . . ‘rank(. .
.)’ RStudio Help → Search R Help ⇒ GPT GPT 3 (1) (GPT ) (2) (GPT ) (3) 2023 1-2 — 2023-11-30 – p.29/36
R ( D)(1/2) — R <- c(4.6, 5.6, 3.2, 3.2,
3.7, 4.0, 5.0, 4.6) <- c(4.6, 4.9, 7.1, 6.0, 5.2, 3.9, 5.3, 5.8) # combined_samples <- c( , ) sample_group <- c(rep(" ", length( )), rep(" ", length( ))) # ranks <- rank(combined_samples) # df <- data.frame(value = combined_samples, group = sample_group, rank = ranks) # ra <- sum(df[df$group == " ", "rank"]) rb <- sum(df[df$group == " ", "rank"]) 2023 1-2 — 2023-11-30 – p.30/36
R ( D)(2/2) — R # U na <- length(
) nb <- length( ) U <- min(na*nb + na / 2 * (na + 1) - ra, na*nb + nb / 2 * (nb + 1) - rb) print(paste("U =", U)) # paste # sdf <- data.frame( , ) # boxplot(sdf, ylim=c(0, 8.0), ylab=" ( : )") U U0.05 2023 1-2 — 2023-11-30 – p.31/36
⫧‶ ⫧‶࡛ࡣ࡞࠸ 0 2 4 6 8 ᖺ (༢:ⓒ) 2023
1-2 — 2023-11-30 – p.32/36
R WMW > wilcox.test( , ) p-value (P )( 9
) 0.05 P ↑ 2023 1-2 — 2023-11-30 – p.33/36
2023 1-2 — 2023-11-30 – p.34/36
1. (1) (2) 2023 12 3 ( ) 23:59 JST
( ) Waseda Moodle (Q & A ) 2023 1-2 — 2023-11-30 – p.35/36
2023 1-2 — 2023-11-30 – p.36/36