Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ基盤の負債解消のためのリプレイス
Search
Livesense Inc.
PRO
November 28, 2024
Technology
0
200
データ基盤の負債解消のためのリプレイス
https://livesense.connpass.com/event/333967/
Livesense Inc.
PRO
November 28, 2024
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
870
26新卒_総合職採用_会社説明資料
livesense
PRO
0
2.7k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
1
11k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
6.3k
中途セールス職_会社説明資料
livesense
PRO
0
160
EM候補者向け転職会議説明資料
livesense
PRO
0
71
コロナで失われたノベルティ作成ノウハウを復活させた話
livesense
PRO
0
190
転職会議でGPT-3を活用した企業口コミ要約機能をリリースした話
livesense
PRO
0
1.2k
株式会社リブセンス マッハバイト_プレイブック
livesense
PRO
0
790
Other Decks in Technology
See All in Technology
終了の危機にあった15年続くWebサービスを全力で存続させる - phpcon2024
yositosi
28
24k
スタートアップで取り組んでいるAzureとMicrosoft 365のセキュリティ対策/How to Improve Azure and Microsoft 365 Security at Startup
yuj1osm
0
260
最近のSfM手法まとめ - COLMAP / GLOMAPを中心に -
kwchrk
8
1.6k
小学3年生夏休みの自由研究「夏休みに Copilot で遊んでみた」
taichinakamura
0
200
Wantedly での Datadog 活用事例
bgpat
2
980
Oracle Cloud Infrastructure:2024年12月度サービス・アップデート
oracle4engineer
PRO
1
390
あの日俺達が夢見たサーバレスアーキテクチャ/the-serverless-architecture-we-dreamed-of
tomoki10
0
540
GitHub Copilot のテクニック集/GitHub Copilot Techniques
rayuron
42
18k
サーバーなしでWordPress運用、できますよ。
sogaoh
PRO
0
150
2024年にチャレンジしたことを振り返るぞ
mitchan
0
160
Zero Data Loss Autonomous Recovery Service サービス概要
oracle4engineer
PRO
1
4.9k
3年でバックエンドエンジニアが5倍に増えても破綻しなかったアーキテクチャ そして、これから / Software architecture that scales even with a 5x increase in backend engineers in 3 years
euglena1215
11
4.1k
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
18
2.3k
Code Reviewing Like a Champion
maltzj
521
39k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
200
Writing Fast Ruby
sferik
628
61k
Producing Creativity
orderedlist
PRO
342
39k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
470
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Speed Design
sergeychernyshev
25
700
Transcript
データ基盤の負債解消のためのリプレイス 2024.11.28 技術部データプラットフォームグループ 富⼠⾕康
• 株式会社リブセンス 技術部データプラットフォームグループ グループリーダー • 2018年⼊社 • 以来、推薦システムの改善、 データ基盤の開発、 マネジメントなどに取り組む
富⼠⾕ 康 (Fujitani Ko)
• ⼈材系を中⼼に複数のプロダクト • プロダクトは各事業部、データ基盤は横断部署で運⽤ リブセンスのプロダクトとデータ基盤
データ基盤、⼤きく分けて2つ プロダクト Redshift プロダクト 外部データ Livesense Analytics: データ分析(収集、蓄積) Livesense Brain:
データ活用(推薦、機械学習) 22年〜大規模に刷新(中)
22年末のLivesense Analytics ※ざっくり Beanstalk ソース Search Console Livesense Brain プロダクト
利⽤先 API Gateway SQS lambda Firehose EMR EC2 EventBridge Scheduler バックエンド オンプレ native app DB
• 同じようなことやるのに技術いろいろ 課題 処理 ⾔語 Beanstalk lambda EMR ワークフロー EventBridge
Scheduler EC2 構成管理 Terraform CDK
• 同じ部署で別のクラウド ◦ 理由あったが⼤変 課題 Livesense Analytics Livesense Brain
• 開発体験が良くない ◦ ⼤きな変更‧モダン化も⼤変 ◦ リリース⼿順も様々 ◦ EOL対応も後⼿ 今までのデータ基盤
• データ‧事業の課題に集中できる環境 理想
• Google Analytics 4への移⾏ • BigQueryとSQLでの加⼯ • 技術スタック統⼀ ◦ GKE/Cloud
Run/Argo Workflows/Python/FastAPI • 詳細は リブセンスの「10年物」のデータ基盤を作り変えている話 にも記載 リプレイスの主な取り組み
• There should be one-- and preferably only one --obvious
way to do it. ◦ 何かをするのに、1つ‒‒理想的には1つだけの‒‒明確な⽅法があるべきだ (参考) • リプレイスで標準的な⽅法を構築 余談: Zen of Python
25年初のLivesense Analytics ※予定 Livesense Brain プロダクト Cloud Run PubSub GKE
CloudBuild CloudDeploy Cronitor CloudMonitoring Search Console Terraform バックエンド native app DB ※検証中 ※検証中
• ⼤きな改善に取り組みやすくなりつつある • SaaSのBigQuery連携も選択肢に ◦ GA4, fastly, Search Console ◦
データ追加の負担減‧よりリッチな情報 • 解きたい課題に集中できつつある リプレイスの結果
• Redash ◦ 利⽤者多‧クエリ多 ◦ データマート層を⼗分に拡充できてない ▪ やや複雑なクエリ - 利⽤者に負担
▪ テーブル定義変更も容易でない • Redshift ◦ プロダクトはAWS。利点もあるが… ◦ BQ や Snowflakeのほうが機能充実 ◦ BQでデータソースからマートまで⼀貫したデータ⽣成したい まだ課題
展望: 少し未来 Livesense Analytics Livesense Brain プロダクト Cloud Run PubSub
Search Console GKE CloudBuild CloudDeploy Cronitor CloudMonitoring Terraform バックエンド native app DB
• アナリティクスエンジニアリングの強化(採⽤) • データを使った業務の改善 ◦ クエリ‧分析の質向上、脱スプレッドシート ◦ データソース改善 • BigQuery移⾏へ
◦ Redshiftのインスタンス変更(dc2->ra3)‧Redshift Spectrumやめる ◦ 各種準備‧実装 • 効果的な推薦‧検索‧機械学習モデルの実装 ◦ MLOps、使いやすいML/AI基盤 今後