Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ基盤の負債解消のためのリプレイス
Search
Livesense Inc.
PRO
November 28, 2024
Technology
0
220
データ基盤の負債解消のためのリプレイス
https://livesense.connpass.com/event/333967/
Livesense Inc.
PRO
November 28, 2024
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
890
26新卒_総合職採用_会社説明資料
livesense
PRO
0
3.1k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
1
12k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
6.7k
中途セールス職_会社説明資料
livesense
PRO
0
170
EM候補者向け転職会議説明資料
livesense
PRO
0
75
コロナで失われたノベルティ作成ノウハウを復活させた話
livesense
PRO
0
190
転職会議でGPT-3を活用した企業口コミ要約機能をリリースした話
livesense
PRO
0
1.3k
株式会社リブセンス マッハバイト_プレイブック
livesense
PRO
0
810
Other Decks in Technology
See All in Technology
「隙間家具OSS」に至る道/Fujiwara Tech Conference 2025
fujiwara3
6
4.3k
Building Scalable Backend Services with Firebase
wisdommatt
0
110
AI×医用画像の現状と可能性_2024年版/AI×medical_imaging_in_japan_2024
tdys13
1
1.3k
カップ麺の待ち時間(3分)でわかるPartyRockアップデート
ryutakondo
0
120
JAWS-UG20250116_iOSアプリエンジニアがAWSreInventに行ってきた(真面目編)
totokit4
0
120
Git scrapingで始める継続的なデータ追跡 / Git Scraping
ohbarye
5
290
comilioとCloudflare、そして未来へと向けて
oliver_diary
5
400
コロプラのオンボーディングを採用から語りたい
colopl
5
730
シフトライトなテスト活動を適切に行うことで、無理な開発をせず、過剰にテストせず、顧客をビックリさせないプロダクトを作り上げているお話 #RSGT2025 / Shift Right
nihonbuson
3
1.9k
2025年のARグラスの潮流
kotauchisunsun
0
760
新しいスケーリング則と学習理論
taiji_suzuki
10
3.8k
Visual StudioとかIDE関連小ネタ話
kosmosebi
1
340
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
327
24k
Facilitating Awesome Meetings
lara
50
6.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.7k
Side Projects
sachag
452
42k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.3k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
How STYLIGHT went responsive
nonsquared
96
5.3k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.4k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Testing 201, or: Great Expectations
jmmastey
41
7.2k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
Transcript
データ基盤の負債解消のためのリプレイス 2024.11.28 技術部データプラットフォームグループ 富⼠⾕康
• 株式会社リブセンス 技術部データプラットフォームグループ グループリーダー • 2018年⼊社 • 以来、推薦システムの改善、 データ基盤の開発、 マネジメントなどに取り組む
富⼠⾕ 康 (Fujitani Ko)
• ⼈材系を中⼼に複数のプロダクト • プロダクトは各事業部、データ基盤は横断部署で運⽤ リブセンスのプロダクトとデータ基盤
データ基盤、⼤きく分けて2つ プロダクト Redshift プロダクト 外部データ Livesense Analytics: データ分析(収集、蓄積) Livesense Brain:
データ活用(推薦、機械学習) 22年〜大規模に刷新(中)
22年末のLivesense Analytics ※ざっくり Beanstalk ソース Search Console Livesense Brain プロダクト
利⽤先 API Gateway SQS lambda Firehose EMR EC2 EventBridge Scheduler バックエンド オンプレ native app DB
• 同じようなことやるのに技術いろいろ 課題 処理 ⾔語 Beanstalk lambda EMR ワークフロー EventBridge
Scheduler EC2 構成管理 Terraform CDK
• 同じ部署で別のクラウド ◦ 理由あったが⼤変 課題 Livesense Analytics Livesense Brain
• 開発体験が良くない ◦ ⼤きな変更‧モダン化も⼤変 ◦ リリース⼿順も様々 ◦ EOL対応も後⼿ 今までのデータ基盤
• データ‧事業の課題に集中できる環境 理想
• Google Analytics 4への移⾏ • BigQueryとSQLでの加⼯ • 技術スタック統⼀ ◦ GKE/Cloud
Run/Argo Workflows/Python/FastAPI • 詳細は リブセンスの「10年物」のデータ基盤を作り変えている話 にも記載 リプレイスの主な取り組み
• There should be one-- and preferably only one --obvious
way to do it. ◦ 何かをするのに、1つ‒‒理想的には1つだけの‒‒明確な⽅法があるべきだ (参考) • リプレイスで標準的な⽅法を構築 余談: Zen of Python
25年初のLivesense Analytics ※予定 Livesense Brain プロダクト Cloud Run PubSub GKE
CloudBuild CloudDeploy Cronitor CloudMonitoring Search Console Terraform バックエンド native app DB ※検証中 ※検証中
• ⼤きな改善に取り組みやすくなりつつある • SaaSのBigQuery連携も選択肢に ◦ GA4, fastly, Search Console ◦
データ追加の負担減‧よりリッチな情報 • 解きたい課題に集中できつつある リプレイスの結果
• Redash ◦ 利⽤者多‧クエリ多 ◦ データマート層を⼗分に拡充できてない ▪ やや複雑なクエリ - 利⽤者に負担
▪ テーブル定義変更も容易でない • Redshift ◦ プロダクトはAWS。利点もあるが… ◦ BQ や Snowflakeのほうが機能充実 ◦ BQでデータソースからマートまで⼀貫したデータ⽣成したい まだ課題
展望: 少し未来 Livesense Analytics Livesense Brain プロダクト Cloud Run PubSub
Search Console GKE CloudBuild CloudDeploy Cronitor CloudMonitoring Terraform バックエンド native app DB
• アナリティクスエンジニアリングの強化(採⽤) • データを使った業務の改善 ◦ クエリ‧分析の質向上、脱スプレッドシート ◦ データソース改善 • BigQuery移⾏へ
◦ Redshiftのインスタンス変更(dc2->ra3)‧Redshift Spectrumやめる ◦ 各種準備‧実装 • 効果的な推薦‧検索‧機械学習モデルの実装 ◦ MLOps、使いやすいML/AI基盤 今後