Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ基盤の負債解消のためのリプレイス
Search
Livesense Inc.
PRO
November 28, 2024
Technology
0
390
データ基盤の負債解消のためのリプレイス
https://livesense.connpass.com/event/333967/
Livesense Inc.
PRO
November 28, 2024
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
27新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
0
83
株式会社リブセンス・転職会議 採用候補者様向け資料
livesense
PRO
0
15
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
1.4k
26新卒_総合職採用_会社説明資料
livesense
PRO
0
8.8k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
1
27k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
12k
中途セールス職_会社説明資料
livesense
PRO
0
250
EM候補者向け転職会議説明資料
livesense
PRO
0
120
コロナで失われたノベルティ作成ノウハウを復活させた話
livesense
PRO
0
250
Other Decks in Technology
See All in Technology
AWS Organizations 新機能!マルチパーティ承認の紹介
yhana
1
210
2025-06-26 GitHub CopilotとAI駆動開発:実践と導入のリアル
fl_kawachi
1
210
2025-06-26_Lightning_Talk_for_Lightning_Talks
_hashimo2
2
110
本が全く読めなかった過去の自分へ
genshun9
0
660
5min GuardDuty Extended Threat Detection EKS
takakuni
0
180
PHPでWebブラウザのレンダリングエンジンを実装する
dip_tech
PRO
0
210
データプラットフォーム技術におけるメダリオンアーキテクチャという考え方/DataPlatformWithMedallionArchitecture
smdmts
5
670
MySQL5.6から8.4へ 戦いの記録
kyoshidaxx
1
290
Node-RED × MCP 勉強会 vol.1
1ftseabass
PRO
0
170
Witchcraft for Memory
pocke
1
650
「良さそう」と「とても良い」の間には 「良さそうだがホンマか」がたくさんある / 2025.07.01 LLM品質Night
smiyawaki0820
1
420
Tech-Verse 2025 Keynote
lycorptech_jp
PRO
0
1.2k
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Testing 201, or: Great Expectations
jmmastey
42
7.6k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The World Runs on Bad Software
bkeepers
PRO
69
11k
Navigating Team Friction
lara
187
15k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
KATA
mclloyd
30
14k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
VelocityConf: Rendering Performance Case Studies
addyosmani
331
24k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Transcript
データ基盤の負債解消のためのリプレイス 2024.11.28 技術部データプラットフォームグループ 富⼠⾕康
• 株式会社リブセンス 技術部データプラットフォームグループ グループリーダー • 2018年⼊社 • 以来、推薦システムの改善、 データ基盤の開発、 マネジメントなどに取り組む
富⼠⾕ 康 (Fujitani Ko)
• ⼈材系を中⼼に複数のプロダクト • プロダクトは各事業部、データ基盤は横断部署で運⽤ リブセンスのプロダクトとデータ基盤
データ基盤、⼤きく分けて2つ プロダクト Redshift プロダクト 外部データ Livesense Analytics: データ分析(収集、蓄積) Livesense Brain:
データ活用(推薦、機械学習) 22年〜大規模に刷新(中)
22年末のLivesense Analytics ※ざっくり Beanstalk ソース Search Console Livesense Brain プロダクト
利⽤先 API Gateway SQS lambda Firehose EMR EC2 EventBridge Scheduler バックエンド オンプレ native app DB
• 同じようなことやるのに技術いろいろ 課題 処理 ⾔語 Beanstalk lambda EMR ワークフロー EventBridge
Scheduler EC2 構成管理 Terraform CDK
• 同じ部署で別のクラウド ◦ 理由あったが⼤変 課題 Livesense Analytics Livesense Brain
• 開発体験が良くない ◦ ⼤きな変更‧モダン化も⼤変 ◦ リリース⼿順も様々 ◦ EOL対応も後⼿ 今までのデータ基盤
• データ‧事業の課題に集中できる環境 理想
• Google Analytics 4への移⾏ • BigQueryとSQLでの加⼯ • 技術スタック統⼀ ◦ GKE/Cloud
Run/Argo Workflows/Python/FastAPI • 詳細は リブセンスの「10年物」のデータ基盤を作り変えている話 にも記載 リプレイスの主な取り組み
• There should be one-- and preferably only one --obvious
way to do it. ◦ 何かをするのに、1つ‒‒理想的には1つだけの‒‒明確な⽅法があるべきだ (参考) • リプレイスで標準的な⽅法を構築 余談: Zen of Python
25年初のLivesense Analytics ※予定 Livesense Brain プロダクト Cloud Run PubSub GKE
CloudBuild CloudDeploy Cronitor CloudMonitoring Search Console Terraform バックエンド native app DB ※検証中 ※検証中
• ⼤きな改善に取り組みやすくなりつつある • SaaSのBigQuery連携も選択肢に ◦ GA4, fastly, Search Console ◦
データ追加の負担減‧よりリッチな情報 • 解きたい課題に集中できつつある リプレイスの結果
• Redash ◦ 利⽤者多‧クエリ多 ◦ データマート層を⼗分に拡充できてない ▪ やや複雑なクエリ - 利⽤者に負担
▪ テーブル定義変更も容易でない • Redshift ◦ プロダクトはAWS。利点もあるが… ◦ BQ や Snowflakeのほうが機能充実 ◦ BQでデータソースからマートまで⼀貫したデータ⽣成したい まだ課題
展望: 少し未来 Livesense Analytics Livesense Brain プロダクト Cloud Run PubSub
Search Console GKE CloudBuild CloudDeploy Cronitor CloudMonitoring Terraform バックエンド native app DB
• アナリティクスエンジニアリングの強化(採⽤) • データを使った業務の改善 ◦ クエリ‧分析の質向上、脱スプレッドシート ◦ データソース改善 • BigQuery移⾏へ
◦ Redshiftのインスタンス変更(dc2->ra3)‧Redshift Spectrumやめる ◦ 各種準備‧実装 • 効果的な推薦‧検索‧機械学習モデルの実装 ◦ MLOps、使いやすいML/AI基盤 今後