Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ基盤の負債解消のためのリプレイス
Search
Livesense Inc.
PRO
November 28, 2024
Technology
0
440
データ基盤の負債解消のためのリプレイス
https://livesense.connpass.com/event/333967/
Livesense Inc.
PRO
November 28, 2024
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
27新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
0
2.5k
株式会社リブセンス・転職会議 採用候補者様向け資料
livesense
PRO
0
53
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
1.5k
26新卒_総合職採用_会社説明資料
livesense
PRO
0
11k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
1
38k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
13k
中途セールス職_会社説明資料
livesense
PRO
0
270
EM候補者向け転職会議説明資料
livesense
PRO
0
130
コロナで失われたノベルティ作成ノウハウを復活させた話
livesense
PRO
0
260
Other Decks in Technology
See All in Technology
5年目から始める Vue3 サイト改善 #frontendo
tacck
PRO
3
230
「Linux」という言葉が指すもの
sat
PRO
4
140
Evolución del razonamiento matemático de GPT-4.1 a GPT-5 - Data Aventura Summit 2025 & VSCode DevDays
lauchacarro
0
210
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
260
Rustから学ぶ 非同期処理の仕組み
skanehira
1
150
Automating Web Accessibility Testing with AI Agents
maminami373
0
1.3k
エンジニアリングマネージャーの成長の道筋とキャリア / Developers Summit 2025 KANSAI
daiksy
3
1k
Snowflake×dbtを用いたテレシーのデータ基盤のこれまでとこれから
sagara
0
120
職種の壁を溶かして開発サイクルを高速に回す~情報透明性と職種越境から考えるAIフレンドリーな職種間連携~
daitasu
0
170
S3アクセス制御の設計ポイント
tommy0124
3
200
未経験者・初心者に贈る!40分でわかるAndroidアプリ開発の今と大事なポイント
operando
5
750
Android Audio: Beyond Winning On It
atsushieno
0
2.4k
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Practical Orchestrator
shlominoach
190
11k
Optimizing for Happiness
mojombo
379
70k
Writing Fast Ruby
sferik
628
62k
A better future with KSS
kneath
239
17k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
How to Ace a Technical Interview
jacobian
279
23k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
850
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Transcript
データ基盤の負債解消のためのリプレイス 2024.11.28 技術部データプラットフォームグループ 富⼠⾕康
• 株式会社リブセンス 技術部データプラットフォームグループ グループリーダー • 2018年⼊社 • 以来、推薦システムの改善、 データ基盤の開発、 マネジメントなどに取り組む
富⼠⾕ 康 (Fujitani Ko)
• ⼈材系を中⼼に複数のプロダクト • プロダクトは各事業部、データ基盤は横断部署で運⽤ リブセンスのプロダクトとデータ基盤
データ基盤、⼤きく分けて2つ プロダクト Redshift プロダクト 外部データ Livesense Analytics: データ分析(収集、蓄積) Livesense Brain:
データ活用(推薦、機械学習) 22年〜大規模に刷新(中)
22年末のLivesense Analytics ※ざっくり Beanstalk ソース Search Console Livesense Brain プロダクト
利⽤先 API Gateway SQS lambda Firehose EMR EC2 EventBridge Scheduler バックエンド オンプレ native app DB
• 同じようなことやるのに技術いろいろ 課題 処理 ⾔語 Beanstalk lambda EMR ワークフロー EventBridge
Scheduler EC2 構成管理 Terraform CDK
• 同じ部署で別のクラウド ◦ 理由あったが⼤変 課題 Livesense Analytics Livesense Brain
• 開発体験が良くない ◦ ⼤きな変更‧モダン化も⼤変 ◦ リリース⼿順も様々 ◦ EOL対応も後⼿ 今までのデータ基盤
• データ‧事業の課題に集中できる環境 理想
• Google Analytics 4への移⾏ • BigQueryとSQLでの加⼯ • 技術スタック統⼀ ◦ GKE/Cloud
Run/Argo Workflows/Python/FastAPI • 詳細は リブセンスの「10年物」のデータ基盤を作り変えている話 にも記載 リプレイスの主な取り組み
• There should be one-- and preferably only one --obvious
way to do it. ◦ 何かをするのに、1つ‒‒理想的には1つだけの‒‒明確な⽅法があるべきだ (参考) • リプレイスで標準的な⽅法を構築 余談: Zen of Python
25年初のLivesense Analytics ※予定 Livesense Brain プロダクト Cloud Run PubSub GKE
CloudBuild CloudDeploy Cronitor CloudMonitoring Search Console Terraform バックエンド native app DB ※検証中 ※検証中
• ⼤きな改善に取り組みやすくなりつつある • SaaSのBigQuery連携も選択肢に ◦ GA4, fastly, Search Console ◦
データ追加の負担減‧よりリッチな情報 • 解きたい課題に集中できつつある リプレイスの結果
• Redash ◦ 利⽤者多‧クエリ多 ◦ データマート層を⼗分に拡充できてない ▪ やや複雑なクエリ - 利⽤者に負担
▪ テーブル定義変更も容易でない • Redshift ◦ プロダクトはAWS。利点もあるが… ◦ BQ や Snowflakeのほうが機能充実 ◦ BQでデータソースからマートまで⼀貫したデータ⽣成したい まだ課題
展望: 少し未来 Livesense Analytics Livesense Brain プロダクト Cloud Run PubSub
Search Console GKE CloudBuild CloudDeploy Cronitor CloudMonitoring Terraform バックエンド native app DB
• アナリティクスエンジニアリングの強化(採⽤) • データを使った業務の改善 ◦ クエリ‧分析の質向上、脱スプレッドシート ◦ データソース改善 • BigQuery移⾏へ
◦ Redshiftのインスタンス変更(dc2->ra3)‧Redshift Spectrumやめる ◦ 各種準備‧実装 • 効果的な推薦‧検索‧機械学習モデルの実装 ◦ MLOps、使いやすいML/AI基盤 今後