Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
lambdaの連鎖で作るRecommendEngine
Search
mahiguch
June 04, 2019
Programming
0
300
lambdaの連鎖で作るRecommendEngine
「Cloud Native Meetup Tokyo #8 ServiceMesh Day Recap」でのLT資料です。
mahiguch
June 04, 2019
Tweet
Share
More Decks by mahiguch
See All by mahiguch
爆速で成長する おでかけ情報サービスの成長を支えるデザインと開発の取り組みについて
mahiguch
0
38
WebView認証連携
mahiguch
0
60
メディアアプリLIMIAにおけるプッシュ通知配信システム
mahiguch
0
88
公式部活動技術書典部の活動紹介
mahiguch
0
99
エンジニア以外の方が自らSQLを使ってセグメント分析を行うカルチャーをどのように作っていったか
mahiguch
1
1k
PHPからgoへの移行で分かったこと
mahiguch
2
3.9k
BigQueryを使った機械学習プロジェクトの分析とオフライン検証
mahiguch
2
1.1k
gRPCを使ったメディアサービス2
mahiguch
0
190
LIMIAでのBigQuery活用事例
mahiguch
0
190
Other Decks in Programming
See All in Programming
安全に倒し切るリリースをするために:15年来レガシーシステムのフルリプレイス挑戦記
sakuraikotone
5
2.3k
AtCoder Heuristic First-step Vol.1 講義スライド(山登り法・焼きなまし法編)
takumi152
3
980
読もう! Android build ドキュメント
andpad
1
240
令和トラベルにおけるコンテンツ生成AIアプリケーション開発の実践
ippo012
1
260
WordPress Playground for Developers
iambherulal
0
120
CTFのWebにおける⾼難易度問題について
hamayanhamayan
1
980
本当だってば!俺もTRICK 2022に入賞してたんだってば!
jinroq
0
250
NestJSのコードからOpenAPIを自動生成する際の最適解を探す
astatsuya
0
190
Let's Take a Peek at PHP Parser 5.x!
inouehi
0
100
ミリしらMCP勉強会
watany
2
390
AI Agents with JavaScript
slobodan
0
110
データベースエンジニアの仕事を楽にする。PgAssistantの紹介
nnaka2992
9
4.2k
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Being A Developer After 40
akosma
90
590k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Practical Orchestrator
shlominoach
187
10k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
How STYLIGHT went responsive
nonsquared
99
5.4k
Typedesign – Prime Four
hannesfritz
41
2.6k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
For a Future-Friendly Web
brad_frost
176
9.6k
Why Our Code Smells
bkeepers
PRO
336
57k
Transcript
lambdaの連鎖で作る Recommend Engine
Masahiro Higuchi / 樋口雅拓 • グリーグループのリミア株式会社で、LIMIA という住まい領域のメディアを 作っています。ゲーム会社ですが、最近はメディアに力を入れています。 • 機械学習のエンジニアですが、iOS,
Android,JSなどもやっている何でも屋 です。4歳の娘のパパ。twitter: @mahiguch1 • https://limia.jp/ • https://arine.jp/ • https://aumo.jp/ • https://www.mine-3m.com/mine/
LIMIAとは? • メディアサービス • 記事一覧を表示し、タップすると記事 詳細を閲覧できる。 • AWS:90%、GCP:10%。 • PHP/EC2
→ Go/ECS移行中 ユーザに最適なコンテンツを推薦する事 で、回遊性を向上させたい! → Recommend Engine(推薦システム)を 作ろう。
どうやってRecommendするのか • ユーザを10個ぐらいのセグメントに分類 • セグメント毎にCTRを計算 • 記事の投稿日時で補正したCTRが高い順にリストに掲載 → せっかく今から作るんだから、インスタンスを立てずに行こう!
ユーザモデル作成 ユーザが記事を閲覧すると、その情報が Kinesis に流れます。Lambdaで受け取り、直近10件の閲 覧履歴をDynamoDBに保存します。その変更を DynamoDB Streamに流し、Lambdaで受け取っ て記事のベクトルの平均をユーザベクトルとして DynamoDBに書き込みます。
ユーザ分類 ユーザの閲覧履歴は、 Kinesis経由でS3にも保 存されます。EMRでそれを読み込み、 k-means++で10セグメントに分割し、分割結果を BigQueryに書き込みます。BigQueryでセグメン ト毎の直近2時間のCTRを計算し、S3に書き戻し ます。それをDynamoDBに書きます。EMRでの 計算で出来るセグメントの中心ベクトルとアイデ アのベクトルも同様に
Dynamoに書き出します。 アイデアベクトル生成は 1日1回だと遅いので、 改善したい。
配信 ユーザが記事一覧を表示しようとすると、 Recommend Engineに問い合わせます。 Recommend Engineはユーザの直近10件の記事閲 覧履歴から所属するセグメントを選び、そのセグメント のユーザの直近2時間のCTRが高いものを表示しま す。ただし、古い記事ほど減点し、ユーザの前回ログ イン以降に投稿された記事は加点します。
Recommend Engineはgolangで書いて、 ECS/Fargateで動かしています。
システム構成図 パラメータ一覧 • ユーザベクトル生成は、即時。 • アイデアベクトル生成は、毎日。 • 辞書は2年前のwikipediaベース。 • CTRの計算は直近2時間。
• 推薦対象は、全記事。 • セグメントは10個。 これらについて、A/Bテストを行い、最適値を 探す。1Round 1週間として、6月末までに5回 行う。
まとめ • Recommend Engineは簡単に作れる。 • 今の所は既存編成ロジックより良い結果が出ている。 • システム的にはアイデアベクトル生成をリアルタイムで行いたい。しかし、 S3にある5GBの辞書 を読み込む必要があるため、
Lambdaで実行時に読み込むとコスト的にやばい。何か良いアイ デアがあれば教えて欲しい。 ありがとうございました。懇親会でぜひ声をかけてください!