Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
lambdaの連鎖で作るRecommendEngine
Search
mahiguch
June 04, 2019
Programming
0
290
lambdaの連鎖で作るRecommendEngine
「Cloud Native Meetup Tokyo #8 ServiceMesh Day Recap」でのLT資料です。
mahiguch
June 04, 2019
Tweet
Share
More Decks by mahiguch
See All by mahiguch
爆速で成長する おでかけ情報サービスの成長を支えるデザインと開発の取り組みについて
mahiguch
0
27
WebView認証連携
mahiguch
0
53
メディアアプリLIMIAにおけるプッシュ通知配信システム
mahiguch
0
84
公式部活動技術書典部の活動紹介
mahiguch
0
95
エンジニア以外の方が自らSQLを使ってセグメント分析を行うカルチャーをどのように作っていったか
mahiguch
1
990
PHPからgoへの移行で分かったこと
mahiguch
2
3.9k
BigQueryを使った機械学習プロジェクトの分析とオフライン検証
mahiguch
2
1.1k
gRPCを使ったメディアサービス2
mahiguch
0
180
LIMIAでのBigQuery活用事例
mahiguch
0
180
Other Decks in Programming
See All in Programming
2025.01.17_Sansan × DMM.swift
riofujimon
2
570
はてなにおけるfujiwara-wareの活用やecspressoのCI/CD構成 / Fujiwara Tech Conference 2025
cohalz
3
2.8k
return文におけるstd::moveについて
onihusube
1
1.4k
Внедряем бюджетирование, или Как сделать хорошо?
lamodatech
0
950
Fibonacci Function Gallery - Part 2
philipschwarz
PRO
0
210
知られざるDMMデータエンジニアの生態 〜かつてツチノコと呼ばれし者〜
takaha4k
1
450
オニオンアーキテクチャを使って、 Unityと.NETでコードを共有する
soi013
0
370
ISUCON14感想戦で85万点まで頑張ってみた
ponyo877
1
600
Rubyでつくるパケットキャプチャツール
ydah
0
170
月刊 競技プログラミングをお仕事に役立てるには
terryu16
1
1.2k
GitHub CopilotでTypeScriptの コード生成するワザップ
starfish719
26
6k
サーバーゆる勉強会 DBMS の仕組み編
kj455
1
300
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
3
180
No one is an island. Learnings from fostering a developers community.
thoeni
19
3.1k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Designing for humans not robots
tammielis
250
25k
Scaling GitHub
holman
459
140k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.1k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Code Reviewing Like a Champion
maltzj
521
39k
Documentation Writing (for coders)
carmenintech
67
4.5k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.7k
Transcript
lambdaの連鎖で作る Recommend Engine
Masahiro Higuchi / 樋口雅拓 • グリーグループのリミア株式会社で、LIMIA という住まい領域のメディアを 作っています。ゲーム会社ですが、最近はメディアに力を入れています。 • 機械学習のエンジニアですが、iOS,
Android,JSなどもやっている何でも屋 です。4歳の娘のパパ。twitter: @mahiguch1 • https://limia.jp/ • https://arine.jp/ • https://aumo.jp/ • https://www.mine-3m.com/mine/
LIMIAとは? • メディアサービス • 記事一覧を表示し、タップすると記事 詳細を閲覧できる。 • AWS:90%、GCP:10%。 • PHP/EC2
→ Go/ECS移行中 ユーザに最適なコンテンツを推薦する事 で、回遊性を向上させたい! → Recommend Engine(推薦システム)を 作ろう。
どうやってRecommendするのか • ユーザを10個ぐらいのセグメントに分類 • セグメント毎にCTRを計算 • 記事の投稿日時で補正したCTRが高い順にリストに掲載 → せっかく今から作るんだから、インスタンスを立てずに行こう!
ユーザモデル作成 ユーザが記事を閲覧すると、その情報が Kinesis に流れます。Lambdaで受け取り、直近10件の閲 覧履歴をDynamoDBに保存します。その変更を DynamoDB Streamに流し、Lambdaで受け取っ て記事のベクトルの平均をユーザベクトルとして DynamoDBに書き込みます。
ユーザ分類 ユーザの閲覧履歴は、 Kinesis経由でS3にも保 存されます。EMRでそれを読み込み、 k-means++で10セグメントに分割し、分割結果を BigQueryに書き込みます。BigQueryでセグメン ト毎の直近2時間のCTRを計算し、S3に書き戻し ます。それをDynamoDBに書きます。EMRでの 計算で出来るセグメントの中心ベクトルとアイデ アのベクトルも同様に
Dynamoに書き出します。 アイデアベクトル生成は 1日1回だと遅いので、 改善したい。
配信 ユーザが記事一覧を表示しようとすると、 Recommend Engineに問い合わせます。 Recommend Engineはユーザの直近10件の記事閲 覧履歴から所属するセグメントを選び、そのセグメント のユーザの直近2時間のCTRが高いものを表示しま す。ただし、古い記事ほど減点し、ユーザの前回ログ イン以降に投稿された記事は加点します。
Recommend Engineはgolangで書いて、 ECS/Fargateで動かしています。
システム構成図 パラメータ一覧 • ユーザベクトル生成は、即時。 • アイデアベクトル生成は、毎日。 • 辞書は2年前のwikipediaベース。 • CTRの計算は直近2時間。
• 推薦対象は、全記事。 • セグメントは10個。 これらについて、A/Bテストを行い、最適値を 探す。1Round 1週間として、6月末までに5回 行う。
まとめ • Recommend Engineは簡単に作れる。 • 今の所は既存編成ロジックより良い結果が出ている。 • システム的にはアイデアベクトル生成をリアルタイムで行いたい。しかし、 S3にある5GBの辞書 を読み込む必要があるため、
Lambdaで実行時に読み込むとコスト的にやばい。何か良いアイ デアがあれば教えて欲しい。 ありがとうございました。懇親会でぜひ声をかけてください!