Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Brewing Beer with Python
Search
Marco Bonzanini
December 04, 2018
Science
2
260
Brewing Beer with Python
Lightning talk on using Artificial Intelligence to generate beer recipes
Marco Bonzanini
December 04, 2018
Tweet
Share
More Decks by Marco Bonzanini
See All by Marco Bonzanini
Pitfalls in Data Science Projects (and how to avoid them)
marcobonzanini
0
20
Is Your Open-source LLM Really Open?
marcobonzanini
0
33
Perambulations in Football Analytics
marcobonzanini
0
21
Natural Language Processing Expert Briefing @ PyData Global 2022
marcobonzanini
0
76
Natural Language Processing Expert Briefing @ PyData Global 2021
marcobonzanini
0
98
Getting into Data Science @ HisarCS 2021
marcobonzanini
0
230
Mining topics in documents with topic modelling and Python @ London Python meetup
marcobonzanini
1
200
Topic Modelling workshop @ PyCon UK 2019
marcobonzanini
2
97
Lies, Damned Lies, and Statistics @ PyCon UK 2019
marcobonzanini
0
100
Other Decks in Science
See All in Science
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
270
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
290
学術講演会中央大学学員会いわき支部
tagtag
0
140
サイゼミ用因果推論
lw
1
5.8k
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
440
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
270
LIMEを用いた判断根拠の可視化
kentaitakura
0
490
SciPyDataJapan 2025
schwalbe10
0
150
機械学習を支える連続最適化
nearme_tech
PRO
1
300
オンプレミス環境にKubernetesを構築する
koukimiura
0
180
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
300
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.7k
Featured
See All Featured
Six Lessons from altMBA
skipperchong
27
3.7k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
7
630
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
30
1.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
A better future with KSS
kneath
239
17k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
Code Reviewing Like a Champion
maltzj
522
39k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.2k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
360
The Pragmatic Product Professional
lauravandoore
33
6.5k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.6k
Typedesign – Prime Four
hannesfritz
41
2.6k
Transcript
Brewing Beer with Python @MarcoBonzanini @PyDataLondon
Python + Beer = Over-engineering
MALT WATER HOPS YEAST
1.Mashing (grains + water) 2.Boiling (+ hops) 3.Cooling 4.Fermentation (+
yeast)
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
None
None
Recipe URLs XML Recipes Text Recipes requests pybeerxml
Neural Networks
Recurrent Neural Networks (RNN) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
RNN unrolled http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Long Short Term Memory (LSTM) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
None
None