Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Brewing Beer with Python
Search
Marco Bonzanini
December 04, 2018
Science
2
280
Brewing Beer with Python
Lightning talk on using Artificial Intelligence to generate beer recipes
Marco Bonzanini
December 04, 2018
Tweet
Share
More Decks by Marco Bonzanini
See All by Marco Bonzanini
Pitfalls in Data Science Projects (and how to avoid them)
marcobonzanini
0
57
Is Your Open-source LLM Really Open?
marcobonzanini
0
69
Perambulations in Football Analytics
marcobonzanini
0
49
Natural Language Processing Expert Briefing @ PyData Global 2022
marcobonzanini
0
100
Natural Language Processing Expert Briefing @ PyData Global 2021
marcobonzanini
0
130
Getting into Data Science @ HisarCS 2021
marcobonzanini
0
280
Mining topics in documents with topic modelling and Python @ London Python meetup
marcobonzanini
1
220
Topic Modelling workshop @ PyCon UK 2019
marcobonzanini
2
120
Lies, Damned Lies, and Statistics @ PyCon UK 2019
marcobonzanini
0
140
Other Decks in Science
See All in Science
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
190
データマイニング - ウェブとグラフ
trycycle
PRO
0
220
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
440
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
220
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
300
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
0
100
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
200
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
330
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
640
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
Featured
See All Featured
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
200
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
GitHub's CSS Performance
jonrohan
1032
470k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
4 Signs Your Business is Dying
shpigford
186
22k
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
0
100
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
120
The untapped power of vector embeddings
frankvandijk
1
1.5k
Context Engineering - Making Every Token Count
addyosmani
9
560
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
32
Unsuck your backbone
ammeep
671
58k
Transcript
Brewing Beer with Python @MarcoBonzanini @PyDataLondon
Python + Beer = Over-engineering
MALT WATER HOPS YEAST
1.Mashing (grains + water) 2.Boiling (+ hops) 3.Cooling 4.Fermentation (+
yeast)
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
None
None
Recipe URLs XML Recipes Text Recipes requests pybeerxml
Neural Networks
Recurrent Neural Networks (RNN) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
RNN unrolled http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Long Short Term Memory (LSTM) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
None
None