Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Brewing Beer with Python
Search
Marco Bonzanini
December 04, 2018
Science
2
280
Brewing Beer with Python
Lightning talk on using Artificial Intelligence to generate beer recipes
Marco Bonzanini
December 04, 2018
Tweet
Share
More Decks by Marco Bonzanini
See All by Marco Bonzanini
Pitfalls in Data Science Projects (and how to avoid them)
marcobonzanini
0
64
Is Your Open-source LLM Really Open?
marcobonzanini
0
75
Perambulations in Football Analytics
marcobonzanini
0
55
Natural Language Processing Expert Briefing @ PyData Global 2022
marcobonzanini
0
100
Natural Language Processing Expert Briefing @ PyData Global 2021
marcobonzanini
0
130
Getting into Data Science @ HisarCS 2021
marcobonzanini
0
280
Mining topics in documents with topic modelling and Python @ London Python meetup
marcobonzanini
1
230
Topic Modelling workshop @ PyCon UK 2019
marcobonzanini
2
120
Lies, Damned Lies, and Statistics @ PyCon UK 2019
marcobonzanini
0
150
Other Decks in Science
See All in Science
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
120
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
270
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
290
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
PRO
0
120
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
660
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
32k
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
150
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
420
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.5k
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
200
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
880
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
510
Featured
See All Featured
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Are puppies a ranking factor?
jonoalderson
1
2.7k
Mobile First: as difficult as doing things right
swwweet
225
10k
We Have a Design System, Now What?
morganepeng
54
8k
Side Projects
sachag
455
43k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
83
The World Runs on Bad Software
bkeepers
PRO
72
12k
Documentation Writing (for coders)
carmenintech
77
5.3k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
1
280
Google's AI Overviews - The New Search
badams
0
910
Transcript
Brewing Beer with Python @MarcoBonzanini @PyDataLondon
Python + Beer = Over-engineering
MALT WATER HOPS YEAST
1.Mashing (grains + water) 2.Boiling (+ hops) 3.Cooling 4.Fermentation (+
yeast)
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
None
None
Recipe URLs XML Recipes Text Recipes requests pybeerxml
Neural Networks
Recurrent Neural Networks (RNN) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
RNN unrolled http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Long Short Term Memory (LSTM) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
None
None