Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Brewing Beer with Python
Search
Marco Bonzanini
December 04, 2018
Science
2
280
Brewing Beer with Python
Lightning talk on using Artificial Intelligence to generate beer recipes
Marco Bonzanini
December 04, 2018
Tweet
Share
More Decks by Marco Bonzanini
See All by Marco Bonzanini
Pitfalls in Data Science Projects (and how to avoid them)
marcobonzanini
0
61
Is Your Open-source LLM Really Open?
marcobonzanini
0
72
Perambulations in Football Analytics
marcobonzanini
0
51
Natural Language Processing Expert Briefing @ PyData Global 2022
marcobonzanini
0
100
Natural Language Processing Expert Briefing @ PyData Global 2021
marcobonzanini
0
130
Getting into Data Science @ HisarCS 2021
marcobonzanini
0
280
Mining topics in documents with topic modelling and Python @ London Python meetup
marcobonzanini
1
220
Topic Modelling workshop @ PyCon UK 2019
marcobonzanini
2
120
Lies, Damned Lies, and Statistics @ PyCon UK 2019
marcobonzanini
0
140
Other Decks in Science
See All in Science
My Little Monster
juzishuu
0
490
MCMCのR-hatは分散分析である
moricup
0
570
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
340
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
410
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
170
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
140
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.5k
データマイニング - ノードの中心性
trycycle
PRO
0
320
学術講演会中央大学学員会府中支部
tagtag
PRO
0
340
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
550
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.9k
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
650
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
WCS-LA-2024
lcolladotor
0
420
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
45
Between Models and Reality
mayunak
1
170
The Invisible Side of Design
smashingmag
302
51k
New Earth Scene 8
popppiees
1
1.4k
Getting science done with accelerated Python computing platforms
jacobtomlinson
1
100
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
260
エンジニアに許された特別な時間の終わり
watany
106
230k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
270
Transcript
Brewing Beer with Python @MarcoBonzanini @PyDataLondon
Python + Beer = Over-engineering
MALT WATER HOPS YEAST
1.Mashing (grains + water) 2.Boiling (+ hops) 3.Cooling 4.Fermentation (+
yeast)
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
None
None
Recipe URLs XML Recipes Text Recipes requests pybeerxml
Neural Networks
Recurrent Neural Networks (RNN) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
RNN unrolled http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Long Short Term Memory (LSTM) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
None
None