Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Brewing Beer with Python
Search
Marco Bonzanini
December 04, 2018
Science
2
270
Brewing Beer with Python
Lightning talk on using Artificial Intelligence to generate beer recipes
Marco Bonzanini
December 04, 2018
Tweet
Share
More Decks by Marco Bonzanini
See All by Marco Bonzanini
Pitfalls in Data Science Projects (and how to avoid them)
marcobonzanini
0
45
Is Your Open-source LLM Really Open?
marcobonzanini
0
48
Perambulations in Football Analytics
marcobonzanini
0
38
Natural Language Processing Expert Briefing @ PyData Global 2022
marcobonzanini
0
91
Natural Language Processing Expert Briefing @ PyData Global 2021
marcobonzanini
0
110
Getting into Data Science @ HisarCS 2021
marcobonzanini
0
250
Mining topics in documents with topic modelling and Python @ London Python meetup
marcobonzanini
1
210
Topic Modelling workshop @ PyCon UK 2019
marcobonzanini
2
110
Lies, Damned Lies, and Statistics @ PyCon UK 2019
marcobonzanini
0
120
Other Decks in Science
See All in Science
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
620
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
4
640
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1k
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
510
データマイニング - ウェブとグラフ
trycycle
PRO
0
170
mathematics of indirect reciprocity
yohm
1
180
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
850
知能とはなにかーヒトとAIのあいだー
tagtag
0
120
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
340
Ignite の1年間の軌跡
ktombow
0
150
データマイニング - グラフデータと経路
trycycle
PRO
1
210
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
450
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Facilitating Awesome Meetings
lara
55
6.5k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
Balancing Empowerment & Direction
lara
3
630
Fireside Chat
paigeccino
39
3.6k
Embracing the Ebb and Flow
colly
87
4.8k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
We Have a Design System, Now What?
morganepeng
53
7.8k
Building Applications with DynamoDB
mza
96
6.6k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
Brewing Beer with Python @MarcoBonzanini @PyDataLondon
Python + Beer = Over-engineering
MALT WATER HOPS YEAST
1.Mashing (grains + water) 2.Boiling (+ hops) 3.Cooling 4.Fermentation (+
yeast)
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
None
None
Recipe URLs XML Recipes Text Recipes requests pybeerxml
Neural Networks
Recurrent Neural Networks (RNN) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
RNN unrolled http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Long Short Term Memory (LSTM) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
None
None