Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Brewing Beer with Python
Search
Marco Bonzanini
December 04, 2018
Science
2
280
Brewing Beer with Python
Lightning talk on using Artificial Intelligence to generate beer recipes
Marco Bonzanini
December 04, 2018
Tweet
Share
More Decks by Marco Bonzanini
See All by Marco Bonzanini
Pitfalls in Data Science Projects (and how to avoid them)
marcobonzanini
0
48
Is Your Open-source LLM Really Open?
marcobonzanini
0
55
Perambulations in Football Analytics
marcobonzanini
0
41
Natural Language Processing Expert Briefing @ PyData Global 2022
marcobonzanini
0
93
Natural Language Processing Expert Briefing @ PyData Global 2021
marcobonzanini
0
120
Getting into Data Science @ HisarCS 2021
marcobonzanini
0
260
Mining topics in documents with topic modelling and Python @ London Python meetup
marcobonzanini
1
210
Topic Modelling workshop @ PyCon UK 2019
marcobonzanini
2
110
Lies, Damned Lies, and Statistics @ PyCon UK 2019
marcobonzanini
0
130
Other Decks in Science
See All in Science
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
110
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
1
1.2k
データベース02: データベースの概念
trycycle
PRO
2
930
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.8k
Accelerated Computing for Climate forecast
inureyes
0
120
Celebrate UTIG: Staff and Student Awards 2025
utig
0
290
Hakonwa-Quaternion
hiranabe
1
140
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
150
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1k
高校生就活へのDA導入の提案
shunyanoda
0
6k
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
590
凸最適化からDC最適化まで
santana_hammer
1
310
Featured
See All Featured
The Invisible Side of Design
smashingmag
302
51k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Making Projects Easy
brettharned
120
6.4k
Speed Design
sergeychernyshev
32
1.2k
Being A Developer After 40
akosma
91
590k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Typedesign – Prime Four
hannesfritz
42
2.8k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Transcript
Brewing Beer with Python @MarcoBonzanini @PyDataLondon
Python + Beer = Over-engineering
MALT WATER HOPS YEAST
1.Mashing (grains + water) 2.Boiling (+ hops) 3.Cooling 4.Fermentation (+
yeast)
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
None
None
Recipe URLs XML Recipes Text Recipes requests pybeerxml
Neural Networks
Recurrent Neural Networks (RNN) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
RNN unrolled http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Long Short Term Memory (LSTM) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
None
None