Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
インフラの企業研究の価値とこれから
Search
MATSUMOTO Ryosuke
PRO
November 25, 2020
Research
7
19k
インフラの企業研究の価値とこれから
インターネット基盤技術の研究と企業における未来を見据えた研究組織設計と実践
2020/11/15
さくらインターネット株式会社
さくらインターネット研究所
上級研究員 松本 亮介
MATSUMOTO Ryosuke
PRO
November 25, 2020
Tweet
Share
More Decks by MATSUMOTO Ryosuke
See All by MATSUMOTO Ryosuke
さくらインターネット研究所 アップデート2025年
matsumoto_r
PRO
0
580
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
6
5.1k
エンジニアのキャリアパスはどう描く? まつもとりーさんと考える後悔しないキャリア選択
matsumoto_r
PRO
10
2.2k
まつもとりーのこれまでとCOGNANOのこれから
matsumoto_r
PRO
0
300
2022年の研究所の評価制度振り返りと今後
matsumoto_r
PRO
0
740
VUCAワールドから紐解く組織や評価制度の変遷と再設計
matsumoto_r
PRO
9
26k
コンテナの研究開発から学ぶLinuxの要素技術
matsumoto_r
PRO
2
1.5k
開発者体験をさらに向上させる 事業と研究との連携
matsumoto_r
PRO
2
2.3k
企業研究の価値と事業との連携
matsumoto_r
PRO
0
1.4k
Other Decks in Research
See All in Research
NLP2025SharedTask翻訳部門
moriokataku
0
280
Vision Language Modelと完全自動運転AIの最新動向
tsubasashi
2
570
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
6
2.3k
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
120
Principled AI ~深層学習時代における課題解決の方法論~
taniai
3
1.2k
博士論文公聴会: Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining / PhD Defence
yuukit
1
140
電力システム最適化入門
mickey_kubo
1
520
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
6
960
ノンパラメトリック分布表現を用いた位置尤度場周辺化によるRTK-GNSSの整数アンビギュイティ推定
aoki_nosse
0
300
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
10
5.7k
Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications
satai
3
410
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
580
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
92
6k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
14
880
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
A Modern Web Designer's Workflow
chriscoyier
693
190k
The Cost Of JavaScript in 2023
addyosmani
49
7.9k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
228
22k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Transcript
͘͞ΒΠϯλʔωοτגࣜձࣾ (C) Copyright 1996-2020 SAKURA Internet Inc ͘͞ΒΠϯλʔωοτݚڀॴ ΠϯϑϥͷاۀݚڀͷՁͱ͜Ε͔Β 2020/11/25
্ڃݚڀһ দຊ ྄հ Πϯλʔωοτج൫ٕज़ͷݚڀͱاۀʹ͓͚ΔະདྷΛݟਾ͑ͨݚڀ৫ઃܭͱ࣮ફ
1. ͡Ίʹ 2. ΠϯϑϥͷاۀݚڀͷՁ 3. Πϯϑϥͷاۀݚڀͷ͜Ε͔Β 4. ·ͱΊ 2 ࣍
1. ͡Ίʹ
4 ɾ͘͞ΒΠϯλʔωοτݚڀॴ ্ڃݚڀһ ɾϖύϘݚڀॴ ٬һݚڀһ ݚڀސ ɾגࣜձࣾGrooves Forkewll ٕज़ސ ɾגࣜձࣾωοτϑΥϨετ
ٕज़ސ ɾใॲཧֶձ ITRC ֤छҕһ / IEEE ACM USENIX ֤छձһ ɾژେֶത࢜ʢใֶʣ দຊ྄հ / ·ͭͱΓʔ / @matsumotory
• InfraStudyͷΠϯϑϥٕज़ͷจ຺ʹ͓͚Δݚڀ։ൃͱʁ • ݚڀ։ൃͷҙٛߩݙͱʁ • ͳͥاۀͰݚڀॴΛ࣋ͬͯݚڀ͍ͯ͠Δͷ͔ʁ • ͜Ε͔Βݚڀ։ൃͲ͏ͳ͍͔ͬͯ͘ʁ ͘͞ΒΠϯλʔωοτͰશͯͰ͖͍ͯΔͱ͍͏Ͱͳ͘ɼ͜Ε͔ΒऔΓΜ Ͱ͍͖͍ͨ༰Ͱ͋Γ·͢ɽ
5 اۀʹ͓͚Δݚڀͱͳʹ͔
2. ΠϯϑϥͷاۀݚڀͷՁ
1. اۀͷݚڀऀͱ 2. ݚڀऀͷߩݙͱ 7 ΠϯϑϥͷاۀݚڀͷՁ
اۀͷݚڀऀͱ
• اۀͰςΫϊϩδʔΛ৽͘͠ੜΈग़͠ɼӥஐͱͯ͠ӬଓԽͯ͠վળΛ܁Γฦ͢ • ৽͠͞ΛΔͨΊʹաڈɾݱࡏͷؔ࿈ٕज़ɾاۀͷ՝Λௐࠪͯ͠ཧ • ઌͷٕज़τϨϯυΛݟਾ͑ͨݚڀͷௐࠪɾ৽ٕज़ఏҊͱͦͷڞ༗ • ඞͣʹཱ͔ͭͲ͏͔Ͱͳ͘ɼʹཱͨͳ͍͜ͱΔ • ͜Ε·Ͱͷؔ࿈ٕज़ͱٕज़ͷྺ࢙͔Βཧత͋Δ͍ࣗ໌ͳࣝΛಋ͘
• ࣾ֎ʹͦͷݟΛڞ༗͠ɼ͞ΒʹҰൠԽɾఆࣜԽͯ͠վળ͍ͯ͘͠ • ࣾͰจͳͲʹॻ͖͖Εͳ͍ຊԻͱݐલ͔ͬ͠Γͱڞ༗ • จܗ͚ࣜͩͰͳ͘ΑΓձࣾʹ࠷దԽͨ͠ݚڀՌࣝΛఏڙ͢Δ 9 ΫϥυɾϗεςΟϯάاۀͷݚڀऀͱ
• ࣗͨͪͷҙࣝείʔϓͷதͰɼެ։͍ͯ͠Δٕज़ΛਅࣅΔ͚ͩͰղ ܾͰ͖ͳ͍͜ͱ͕૿͖͍͑ͯͯΔ • ΤϯδχΞͰΞΠσΞΛग़ͯ͠ɼΛղܾͨ͠Γ৽͍͠ϓϩμΫτΛ࡞Δ • ͜ΕҰछͷݚڀ։ൃͰ͋Γଟ͘ͷձ͕ࣾͨΓલʹऔΓΜͰ͍Δ • ͜͜ͰऔΓ·Ε͍ͯΔ͜ͱͷՁܭΓΕͳ͍΄ͲૉΒ͍͠ •
ͦͷऔΓΈ͕ຊʹਖ਼͍͔͠Ͳ͏͔ɼཧ͠ධՁ͍ͯ͘͜͠ͱࠔ • ͏·͍ͬͨ͘ղܾϓϩμΫτΛ܁Γฦ͠ૂͬͯߦ͏͜ͱ͍͠ • औΓΈͷόΠΞε͕͔͔ͬͯ͠·͏Մೳੑ → ΈΜͳͰؒҧ͏ 10 ࣮ΤϯδχΞݚڀ૬ͷ͜ͱΛ͍ͬͯΔ
• ݚڀऀࣾͷٕज़ਐԽ՝ΛݴޠԽɾఆࣜԽɾධՁ͠ɼैདྷͷؔ࿈ٕज़ͱ ͷࠩΛ٬؍తʹݟग़ͯ͠ɼ৽ͨͳࣝɾӥஐͱཱͯͤ͠͞Δ͜ͱࣄ • ͜ΕΒͷࣝߏ͕ղ໌͞Ε͓ͯΓɼߋʹޮతʹٞɾ࠶ར༻Մೳ • ྑ͍՝ղܾϓϩμΫτΛ࠶ͼૂͬͯ࡞Γग़ͤΔΑ͏ʹ͢Δ • ʑΤϯδχΞ͕औΓΜͰ͍ΔࠩผԽΛαϙʔτͨ͠ΓɼͦΕΛઐʹऔ ΓΜͰղ໌ͨ͠ΓɼࣗΒఏҊ͠ɼݴޠԽɾҰൠԽͯ͠ݚڀίϛϡχςΟʹ
མͱ͠ࠐΈܧଓతʹվળ͢Δ୲ → όΠΞεͷআڈʹͳΔ • ςΫϊϩδʔ͕ࣄۀΛࠩผԽ͢Δاۀɾ࣌ʹগͰ͍Δͱྑ͍ 11 ͦ͜ͰใܥݚڀऀɾݚڀνʔϜͷొ
• ࣾͰͷ৴པؔͱཱͪҐஔΛߏங͍ͯ͘͜͠ͱ͕ͱʹ͔͘େࣄ • ٕज़త؍Ͱਖ਼͍͠վળͰ͔͋ͬͨͷॿݴ͞ΒͳΔఏҊ • ϓϩμΫγϣϯڥͰ݁Ռ͕ग़͍ͯΔ͔ΛධՁ͢ΔͨΊͷํ๏ͷఏҊ • ͦͷՌΛҰ൪͍ͬͯΔͷͱͯࣾ͠ڞ༗ɾ૬ஊ͞ΕΔଘࡏ • ͨΓલʹ࿈ܞ͕ੜ͡ΔݚڀऀɾνʔϜʹม͍͑ͯ͘ʢޙड़ʣ
12 اۀʹ͓͍ͯνʔϜͱׂͯ͠ΛՌͨ͢
ݚڀऀͷߩݙͱ
• ࣾͷαʔϏεϓϩμΫτɼձࣾʹରͯ͠ߩݙ͕ؒతͰ͋Δɼͱ͍͏Έ • ࣮αʔϏεෳͷؒతߩݙ͕བྷΈ߹࣮ͬͯݱ͞Ε͍ͯΔ • αʔϏεͷίʔυΛॻ͘͜ͱߩݙͱ͍͏Θ͚Ͱͳ͍ • αʔϏεΛੈʹ͛ͨΓɼݟͤํΛ͠ͳ͍ͱΘΕͳ͍࣌ • ܦӦɾใɾӦۀɾϚʔέςΟϯάɾόοΫΦϑΟεɾCSͳͲ༷ʑͳؒ
తߩݙ͕Έ߹Θͬͯ͞αʔϏεΛ࡞Γࢧ͍͑ͯΔ • ݚڀ՝ͷࠜຊతղܾະདྷͷαʔϏεʹඞཁͳٕज़ɼཁ݅ͳͲΛߟ͑ɼܗ ࣜͱͯ͠Ξτϓοτ͠ڞ༗͍ͯ͘͠ → ٕज़ϒϥϯσΟϯάʹͳΔ 14 اۀݚڀऀͷձࣾɾࣾձͷߩݙͱ
• ݚڀΛ͢Δ͜ͱͪΖΜɼͦΕҎ֎ʹͳʹ͕͋Δ͔ʁ • কདྷతʹٻΊΒΕΔநతͳٞʹ͍ͭͯదʹݴޠԽͯ͠ڞ༗͢Δ • ٬؍తʹٕज़Λଊ͑ͯධՁ͢Δ܇࿅Λ͍ͯ͠ΔͨΊɼࣾͷٞʹԠ༻ 15 اۀݚڀऀͷߩݙͷྫʢ̍ʣ
16 ٠ݚڀһʹΑΔΦϑΟεॖୀͷߟ ίϩφՒʹΛൃͨ͠ΦϑΟεݟ͠ʹؔ͢ΔҰߟ, https://research.sakura.ad.jp/2020/09/30/office-degeneracy/
• ݱࡏͷάϩʔόϧج४Ͱͷ࠷৽ͷݚڀʹ͍ͭͯཧղ͠ڞ༗͢Δ • state-of-the-artɼϕʔεϥΠϯɼຊޠͰ·ͱ·͍ͬͯͳ͍࠷৽ٕज़ใ • ࠜຊղܾʹඞཁͳෳࡶͳٕज़Λܟԕ͞Εͳ͍Α͏ʹదʹ͑ΔྗΛཆ͏ • ٕज़తͳධՁαʔϏεԽʹ͏ٙʹ͑ΒΕΔଘࡏʹͳΔ • ઐ֎ͷਓʹΘ͔Γ͘͢ݴޠԽͯ͠આ໌͢ΔྗΛཆ͏
• ઐԽͱͯ͠པΒΕձࣾӡӦʹ͓͚ΔબࢶΛఏڙ͢ΔྗΛཆ͏ • Βͳ͍ΛΒͳ͍ঢ়ଶʹࣝΛ༩͑ߩݙ͢Δ 17 اۀݚڀऀͷߩݙͷྫʢ̎ʣ
18 ٠ݚڀһʹΑΔΤοδϑΥάͱະདྷ ʮΤοδɾϑΥάίϯϐϡʔςΟϯάͷΓཱͪͱωοτϫʔΫΠϯϑϥͷ͜Ε͔Βʯߨԋࢿྉެ։ IUUQTSFTFBSDITBLVSBBEKQPWFSWJFXPGFEHFGPH
19 Ώ͏͏͖ݚڀһʹΑΔ࠷ઌݚڀͷղઆ Ϋϥυܥͷࠃࡍձٞ*&&&$-06%ࢀՃ IUUQTCMPHZVVLJPFOUSZJFFFDMPVE
20 ͭΔʔݚڀһʹΑΔҼՌ୳ࡧख๏ͷղઆ άϥϑΟΧϧϞσϧʹجͮ͘ҼՌ୳ࡧख๏ͷௐࠪ IUUQTCMPHUTVSVCFFUFDIFOUSZ
21 ۽୩ݚڀһʹΑΔ܈ೳΫϥελϦϯά ࣗࢄڠௐγεςϜతໝͱ܈ೳΫϥελϦϯά IUUQTLVNBHBMMJVNIBUFOBCMPHDPNFOUSZ
• ࣾ֎͚ͩͰͳࣾ͘ʹಋ͖ग़ͨ͠ݟݚڀՌΛڞ༗ • ҙ֎ͱݚڀऀΛ͍ͬͯΔͱࣾͰͷڞ༗͕͓Ζ͔ͦʹͳΓ͕ͪ • ڞ༗Λ௨ͯࣾ͡Ͱؾܰʹίϛϡχέʔγϣϯ͕Ͱ͖ΔؔੑΛߏங͢Δ • ͦͷ্ͰɼݚڀՌཧ͞Εͨ৽͍͠ݟΛ͜Ε͔Βͷٕज़ํ αʔϏεઃܭࡦఆɼձࣾํͷࢀߟʹͯ͠Β͏ •
࠷৽ͷٕज़τϨϯυະདྷͷߟʹ͍ͭͯબࢶΛఏڙ͢Δ • ΞτϓοτΛ௨ͯ͡اۀͷٕज़ϒϥϯσΟϯάϓϨθϯε্ 22 اۀݚڀऀͷߩݙͷ·ͱΊ
3. Πϯϑϥͷاۀݚڀͷ͜Ε͔Β
1. νʔϜͱͯ͠ͷݚڀ։ൃ 2. ઃఆͱιϧόʔͳͲͷίϥϘϨʔγϣϯ 3. ܦӦํαʔϏεʹݚڀ׆ಈΛՃ͍͑ͯ͘ྗ 24 اۀݚڀऀɾݚڀॴӡӦʹٻΊΒΕΔ͜ͱ
νʔϜͱͯ͠ͷݚڀ։ൃ
26 1. νʔϜͱͯ͠ͷݚڀ։ൃ • ΤϯδχΞ্͕Γͷࣗݚڀ։ൃʹ༗རͩͱࢥ͍ͬͯͨ • ͠Β͘ݱ࣮తͰۙͷҙ͕ࣝੜͯ͡༗ར͔͠Εͳ͍ • ݚڀΛΓ࢝ΊΔͱΤϯδχΞϦϯάͷ͕࣌ؒݮΔ •
͕͍ࣗͬͯΔͱࢥ͍ͬͯΔΤϯδχΞϦϯάʹຯظݶ͕͋Δ • ؾ͕ͭ͘ͱݱͷٕज़େ͖͘มΘ͓ͬͯΓࡉ෦͕ཧղͰ͖ͳ͘ͳΔ • ࣗෛ͕ٕज़Λநతʹଊ͑͗ͯ͢ಉ͡ͷͩͱؒҧͬͯஅͨ͠Γ͢Δ • ݚڀͷΞΠσΞ͕ݶఆ͞Εͯ͠·ͬͨΓࠓͰ͖Δ͜ͱʹͩ͜ΘΓ͕ͪ
27 1. νʔϜͱͯ͠ͷݚڀ։ൃ • νʔϜͱͯ͠ݚڀ։ൃͷ୲ͭͭ͠ڠྗͯ͠औΓΉ͖ • ٬һݚڀһͱͯ͠ݱͷऔΓΈΛߦ͍ͬͯΔΤϯδχΞͱҰॹʹΔ • mizzy͞Μ੨ࢁ͞ΜͱҰॹʹٞ͢Δ͜ͱͰΪϟοϓΛཧղ͢Δ •
গͳ͘ͱΤϯδχΞ͚ͷࠃࡍΧϯϑΝϨϯεʹࢀՃͯٞ͢͠Δ • ݱͰΤϯδχΞϦϯάΛͯ͠ͳͯ͘ಘΒΕΔใҙࣝతʹಘΔ • USENIX LISAɺKubeConɺOpen Source/Linux SummitɺSREconͳͲ • ҙࣝతʹ͚ࣾͷڞ༗ͱνʔϜؒͰͷ৴པੑߏஙΛ৺͕͚Δ
ઃఆͱιϧόʔͳͲͷ ίϥϘϨʔγϣϯ
• ۙͷIEEE SERVICES / CLOUD 2020ͳͲࠃࡍձٞʹ͓͚ΔτϨϯυ • ػցֶशཧϞσϧɼ౷ܭతख๏Λιϧόʔͱͨ͠՝ղܾ • ιϧόʔͷબͷਖ਼֬ͳࠜڌΑΓ݁Ռͱͯ͠ͷ༗ޮੑͷධՁ
• ࣌എܠʹ߹ΘͤͨιϧόʔͷબʹΑͬͯ·ͣ݁ՌΛग़͢ϑΣʔζʁ • ઃఆιϧόʔߴͳઐత͕ࣝඞཁͳ࣌ʹͳΔ • ͦΕΛશͯҰਓͰΔ͖ͳͷ͔ʁ 29 2. ઃఆͱιϧόʔͳͲͷίϥϘϨʔγϣϯ
30 Ώ͏͏͖ͱͭΔʔͷίϥϘϨʔγϣϯ ϚΠΫϩαʔϏεʹ͓͚Δੑೳҟৗͷਝͳஅʹ͍ͨ࣌ܥྻσʔλͷ࣍ݩݮख๏ IUUQTCMPHZVVLJPFOUSZUTJGUFS
• ઃఆͷಘҙͳઐՈͱιϧόʔ(ػցֶशཧʣͷઐՈͷίϥϘ • ઃఆ͕Ͱ͖Δ͜ͱͱιϧόʔͷ͕ࣝ๛Ͱ͋Δ͜ͱ͘͠Ձ͕͋Δ • ઃఆ͕Ͱ͖ͳ͍ͱݚڀʹͳΒͳ͍ͷͰ͋Εɼιϧόʔ͕ͳͯ͘ݚڀ ʹͳΒͳ͍࣌ • ͬͱࡉԽͨ͠ಘҙͷίϥϘϨʔγϣϯඞཁʹͳ͍ͬͯ͘ •
ΤϯδχΞͷΞτϓοτ͍ͬͯΔ͜ͱͷՁΛӬଓԽͯ͠ӥஐʹ͢Δ • จΛॻ͘ྗɾݱͷࣝɾ՝Λཧ͢ΔྗɾՌΛ͛Δྗ͢Β୲ • ݸਓͰͯ͢ΛΔͷͰͳ͘νʔϜͰࡉ͔͘ڠྗͯ͠ݚڀՌΛग़࣌͢ 31 2. ઃఆͱιϧόʔͳͲͷίϥϘϨʔγϣϯ
ܦӦαʔϏεͷํʹݚڀ׆ಈΛ Ճ͍͑ͯ͘ྗ
• اۀݚڀͷݸਓɾձࣾɾࣾձͷߩݙՁΛదʹݴޠԽ͢Δ • ݚڀͷՁʁจΛॻ͘ҙຯɼࠃࡍձٞͷҙຯʁձࣾͷߩݙʁ • ͜ͷεϥΠυ͕ͦͷҰͭͷߩݙʹͳΕ͍ • اۀͷςΫϊϩδʔઓུʹ͓͍ͯະདྷͷܭըͱݚڀܭըΛ༥߹ͤ͞Δ • ͱʹ͔ࣾ͘ͱͷڞ༗׆ಈܧଓ͠ɼগͣͭ͠৴པؔΛ࡞Δ
• αʔϏεɾϓϩμΫτΛߟ͑Δ্Ͱݚڀ৫ͱٞ͢Δ͜ͱΛͨΓલʹ • ݚڀ։ൃ৫ಉ͡ձࣾɾಉ͡νʔϜͰ͍ؔ͠Ͱ͋Δͣ • લड़ͨ͠ଟ໘తͰؒతͳߩݙΛΈ߹Θ͍ͤͯ͘ 33 3. ܦӦαʔϏεͷํʹݚڀ׆ಈΛՃ͍͑ͯ͘ྗ
• ݚڀΛαʔϏεɾϓϩμΫτʹ׆͔͠ʹ͍͘ͷͰͳ͍ • ݚڀνʔϜͱαʔϏε։ൃͦͷଞνʔϜͱ৴པΛߏஙͰ͖͍ͯͳ͍͔Β • ܦӦํαʔϏεͷߩݙʹݚڀ͕Ͳ͏ҙ͕ٛ͋Δ͔ΛݴޠԽ͖͢ • ձࣾʹ͓͚ΔاۀݚڀͷՁΛ·͕ͣࣗࣗཧղ͢Δͱ͜Ζ͔Β • ઐతͰ͍͠վળ࣮ݱίετΛ୲อͰ͖ΔઐੑΛ࣋ͪݴޠԽ͢Δ
• ৴པ͕ؔ͋ΕͨΓલʹ৫ͱׂͯ͠ΛຒΊ߹͑Δͣ • ͳΜͱͳͬͯ͘ΈͯͦͷޮՌΘ͔Βͳ͍ͱ͜Ζ͔ΒʮΘ͔Δʯະདྷ • ͦΕΛҾͬுΓαϙʔτ͍ͯ͘͠νʔϜ͕͜Ε͔ΒͷاۀݚڀνʔϜ 34 3. ܦӦαʔϏεͷํʹݚڀ׆ಈΛՃ͍͑ͯ͘ྗ
35 3. ܦӦઓུʹݚڀ׆ಈΛՃ͍͑ͯ͘ྗ
4. ·ͱΊ
• ·ͩզʑऔΓ͏ͱͯ͠ؤு͍ͬͯΔͱ͜Ζ • ͜ͷΑ͏ͳεϥΠυͷݴޠԽҰൠԽ·ͨݚڀऀͱͯ͠ഓͬͨεΩϧ • اۀݚڀͷՁߩݙɼ͜Ε͔Βͷاۀݚڀ׆ಈʹ͍ͭͯཧղ͠ߦಈ͍ͯ͘͠ • ݚڀνʔϜಛผͳଘࡏͰͳ͘ձࣾΛ௨ͯࣾ͠ձʹߩݙ͢ΔͨΊͷҰνʔϜ • νʔϜؒͰͷ৴པؔΛߏஙׂ͠Λཧղͯ͠Β͍ͳ͕ΒҰॹʹ͍ͬͯ͘
• ϓϩμΫταʔϏεΛͦΕͧΕͷׂ͔ΒҰॹʹͨΓલʹ࡞Δະདྷ • ʮͱΓ͋͑ͣΔʯ͔ΒʮͶΒͬͯΕΔʯ৫ 37 ·ͱΊ
• TCPriv: ଓݩϓϩηεͷΦʔφใʹجͮ͘TCPΛհͨ͠ಁաతͳݖݶ 38 ͓·͚ɿ࠷৽ͷࣗͷݚڀͷਐḿհ IUUQTXXXESPQCPYDPNTMKBCYBGF[VTTDMPVEUDQQSJWQEG EM