Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
インデックスのパフォーマンス調べてみた
Search
matumoto
October 15, 2022
Technology
0
87
インデックスのパフォーマンス調べてみた
2022/10月に行われた大LTでの発表資料です
イベントページはこちら
https://zli.connpass.com/event/261496/
matumoto
October 15, 2022
Tweet
Share
More Decks by matumoto
See All by matumoto
testingを眺める
matumoto
1
160
sync/v2 プロポーザルの 背景と sync.Pool について
matumoto
0
470
Goトランザクション処理
matumoto
1
52
いまいちどスライスの 挙動を見直してみる
matumoto
0
350
Go1.22のリリース予定の機能を見る
matumoto
0
69
GoのUnderlying typeについて
matumoto
0
200
Typed-nilについて
matumoto
0
330
GoのType Setsという概念
matumoto
0
29
GoのRateLimit処理の実装
matumoto
0
390
Other Decks in Technology
See All in Technology
隙間ツール開発のすすめ / PHP Conference Fukuoka 2025
meihei3
0
260
コンピューティングリソース何を使えばいいの?
tomokusaba
1
110
“それなりに”安全なWebアプリケーションの作り方
xryuseix
0
260
Introducing RFC9111 / YAPC::Fukuoka 2025
k1low
1
200
AWS 環境で GitLab Self-managed を試してみた/aws-gitlab-self-managed
emiki
0
350
What's the recommended Flutter architecture
aakira
0
460
Zabbix Conference Japan 2025 ダッシュボードコンテストLT
katayamatg
0
150
re:Invent完全攻略ガイド
junjikoide
1
250
Data & AIの未来とLakeHouse
ishikawa_satoru
0
710
エンタープライズ企業における開発効率化のためのコンテキスト設計とその活用
sergicalsix
1
270
Logik: A Free and Open-source FPGA Toolchain
omasanori
0
270
こんな時代だからこそ! 想定しておきたいアクセスキー漏洩後のムーブ
takuyay0ne
4
510
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.8k
Being A Developer After 40
akosma
91
590k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Balancing Empowerment & Direction
lara
5
740
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
How GitHub (no longer) Works
holman
315
140k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Statistics for Hackers
jakevdp
799
220k
Automating Front-end Workflow
addyosmani
1371
200k
Why Our Code Smells
bkeepers
PRO
340
57k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
310
Transcript
インデックスの パフォーマンス 調べてみた matumoto
自己紹介 • ハンドルネーム:matumoto • 本名:松本響輝 • 学年:28期 • 趣味:イカᔦꙬᔨ •
やってきた技術: ◦ ゲーム作り ◦ フロントエンド ◦ AtCoder 水💧 • Twitter:@matumoto_1234
インデックスについて
インデックスとは? • インデックスとは、データの検索速度を向上させるために、どの行がどこにあるかを示した索引のこ と (https://www.techscore.com/tech/sql/15_01 より引用) • DBのテーブルに適切にインデックスを作ることで、パフォーマンス向上につながる • MySQLなどではCREATE
TABLEなどの文でインデックスを指定できる • 例. CREATE TABLE people ( id INT, name VARCHAR(512), age INT, INDEX name_INDEX (name) )
インデックスがどう使われるのか? • クエリに対応して、インデックスが自動で使われる • 例. ◦ peopleという名前の、こんなテーブルがあったとする id name age
1 matumoto 20 2 Aizu Taro 256 • SELECT id FROM people WHERE name = 'matumoto' というような、nameカラムに対しての検索クエリが きたとき、name_INDEXが使われる • SELECT idFROM people WHERE age = 20 というような、ageカラムに対しての検索クエリがきたらイン デックスは使われず、テーブル全体がそのまま読み込まれる
インデックスのパフォーマンス • インデックスは基本的に、ユニーク(重複がない)なもののほうがパフォーマンスが良い ◦ 例. PRIMARY KEYに基づくインデックスやUNIQUE制約のついたインデックスなど →なぜパフォーマンスが良いのか?(本題) →後述
インデックスの内部構造
インデックスを作るとどうなるか • インデックスを作ってもテーブル自体に変更が加わるわけではない • テーブルとは別にインデックス用の領域が取られ、まずはそこにアクセスする テーブル インデックス クエリ ソートとかはされていない! テーブルの場所が効率よく検索で
きるように保存されている
インデックスはどうなっているか • B-treeというようなデータ構造がよく使われている ◦ 厳密にはB+treeや、B*treeという改良版が使われることが多い
B-treeとは? • B-treeは平衡探索木の一種 ◦ よくある、平衡二分探索木とかとは違って多分木 ◦ BはBinaryではなく、Balanceの略 ◦ よくデータベース管理システムや、ファイルシステムで使用される 5
70 2 1 3 8 6 20 82 91 71 85 97
B-treeの特徴 • B-treeの特徴 ◦ 完全に平衡になっている(根から任意の葉までのパスの長さが一定 ) ◦ ノードにいくつかの値を持つ ◦ 一つのノードにm個以下の枝があるものをオーダー
mのB-treeと呼ぶ ◦ これはオーダー3のB-tree 5 70 2 1 3 8 6 20 82 91 71 85 97
挿入操作でB-treeの平衡はどうやって保っているの? • A. 気合い http://wwwa.pikara.ne.jp/okojisan/t23-java/index.html より図を引用
削除操作でB-treeの平衡はどうやって保っているの? • A. もちろん気合い http://wwwa.pikara.ne.jp/okojisan/t23-java/index.html より図を引用
B-treeの計算量 • B-treeの計算量 ◦ nを要素数とする ◦ 挿入:O(log n) ◦ 削除:O(log
n) ◦ 検索:O(log n) • AVL木や、赤黒木といった平衡二分探索木より速い? ◦ そんなことはなくて、遅い ◦ オーダーmのB-treeのノードを辿るときにO(m)回の値比較を行うので遅い ◦ データベース管理システムなどで使われるのは、「枝を辿るコスト」 >「値比較のコスト」な ため
B-treeの亜種 • B+treeというのが存在する ◦ 葉ノードがつながっており、範囲クエリに強い ◦ 葉ノードに実際のレコードが全て存在している ◦ MySQL/InnoDBなどで使われている https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
より図を引用
インデックスの パフォーマンス
インデックスのパフォーマンス • SQLクエリをEXPLAINすると表示される「type」 • 主なものとしては、以下がある ◦ const:PRIMARY KEYのインデックスやUNIQUEインデックスを使う。最速 ◦ eq_ref:JOINのときにPRIMARY
KEYのインデックスやUNIQUEインデックスを使う ◦ ref:ユニークでないインデックスを使ったときの等価検索など ◦ range:インデックスを用いた範囲検索 (0 <= key <= 10を満たすkeyを検索するなど) ◦ index:フルインデックススキャン。インデックス全体を見る ◦ all:フルテーブルスキャン。インデックスが使用されていない • なぜユニークだと早くなる傾向にあるのか?
インデックスのパフォーマンス • 検索で遅くなるのは葉ノードの走査が大きな原因の一つとしてある • 検索対象がユニークなら、見つけ次第終了できるが、ユニークでない場合は他の 葉ノードを見る必要がある • 例. 20を見つけたとしても、20が他にあるかもしれないので葉ノードを辿る必要があ る
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html より図を引用
まとめ
まとめ • インデックスの内部構造はB-treeがベースになっていることが多くて、計算量は だ いたい O(log n) ◦ 範囲クエリでk個の要素がみつかるときは、 O(log
n + k) 程度
ご静聴ありがとうございました