Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
UnionFindのなかま
Search
matumoto
December 11, 2021
Technology
0
36
UnionFindのなかま
2021/12月に行われた大LTでの発表資料です
イベントページはこちら
https://zli.connpass.com/event/230124/
matumoto
December 11, 2021
Tweet
Share
More Decks by matumoto
See All by matumoto
testingを眺める
matumoto
1
150
sync/v2 プロポーザルの 背景と sync.Pool について
matumoto
0
380
Goトランザクション処理
matumoto
1
50
いまいちどスライスの 挙動を見直してみる
matumoto
0
350
Go1.22のリリース予定の機能を見る
matumoto
0
67
GoのUnderlying typeについて
matumoto
0
200
Typed-nilについて
matumoto
0
320
GoのType Setsという概念
matumoto
0
28
GoのRateLimit処理の実装
matumoto
0
370
Other Decks in Technology
See All in Technology
analysis パッケージの仕組みの上でMulti linter with configを実現する / Go Conference 2025
k1low
1
250
SoccerNet GSRの紹介と技術応用:選手視点映像を提供するサッカー作戦盤ツール
mixi_engineers
PRO
1
130
組織観点からIAM Identity CenterとIAMの設計を考える
nrinetcom
PRO
1
130
非エンジニアのあなたもできる&もうやってる!コンテキストエンジニアリング
findy_eventslides
3
850
履歴 on Rails: Bitemporal Data Modelで実現する履歴管理/history-on-rails-with-bitemporal-data-model
hypermkt
0
1.8k
Trust as Infrastructure
bcantrill
0
240
SOC2取得の全体像
shonansurvivors
1
340
生成AIで「お客様の声」を ストーリーに変える 新潮流「Generative ETL」
ishikawa_satoru
1
240
BtoBプロダクト開発の深層
16bitidol
0
140
インサイト情報からどこまで自動化できるか試してみた
takas0522
0
120
[2025-09-30] Databricks Genie を利用した分析基盤とデータモデリングの IVRy の現在地
wxyzzz
0
410
Windows で省エネ
murachiakira
0
150
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.2k
Rails Girls Zürich Keynote
gr2m
95
14k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Being A Developer After 40
akosma
90
590k
Thoughts on Productivity
jonyablonski
70
4.8k
Large-scale JavaScript Application Architecture
addyosmani
513
110k
KATA
mclloyd
32
14k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Transcript
UnionFind のなかま 会津大学 学部 2 年 松本響輝 タイトルついでの⾃⼰紹介 • 会津⼤学コンピュータ理⼯学部コンピュータ理⼯学科(⾧い)
• 最近はまってるのはライブラリ作成 ◦ https://github.com/matumoto1234/library/ • Nuxt.js や C++ をたまにやる • 競技プログラミングが好き ◦ AtCoder ⽔ 💧 • ゲーム開発も好き
UnionFind ってご存じですか?
それとなく分かる UnionFind • UnionFind は素集合を管理するデータ構造 ◦ 素集合とは? 素集合・・・どの集合も要素の交わりを持たない A B
それとなく分かる UnionFind • UnionFind でできること ◦ 連結 ならしO( α (N)
) ▪ merge(x, y) := x と y が属する集合をくっつける ◦ 判定 ならしO( α (N) ) ▪ same(x, y) := x と y が属している集合が同じかどうか ※ N は管理する値の数
UnionFind の仕組み • 木構造になっている 0 1 2 3 4 すでにそれぞれが要素数
1 の集合
UnionFind の仕組み • merge(0, 1) が使われると 0 1 2 3
4
UnionFind の仕組み • 続いて merge(2, 3) が使われると 0 1 2
3 4
UnionFind の仕組み • 続いて merge(2, 4) が使われると 0 1 2
3 4
UnionFind の仕組み • 続いて merge(1, 3) が使われると 0 1 2
3 4
それとなく分かる UnionFind • UnionFind でできないこと ◦ 辺の削除 ▪ erase(x, y)
:= x と y を繋ぐ辺を削除 ◦ その他 ▪ UnionFind でできること以外
実は UnionFind には たくさんの親戚がいます!
~ UnionFind の 森 ~ ここは UnionFind の 森 様々な
UnionFind たちを かんさつ できます
おや...?
仲間になりたそうにこちらを見ています じー
近づいて かんさつ してみますか? ➢ はい Yes
彼を かんさつ します...
彼の正体は QuickFind だったようです! 0 1 2 3 4 0 4
3 1 2
それとなく分かる QuickFind • QuickFind は UnionFind と計算量が違う ◦ 連結 O(
N ) ▪ merge(x, y) に O( N ) かかってしまう ◦ 判定 O( 1 ) ▪ same(x, y) は O( 1 ) ですむ
QuickFind の仕組み • 配列で管理 0 1 2 3 4 0
1 3 2 4
QuickFind の仕組み • merge(0, 1) が行われると 0 1 2 3
4 0 1 3 2 4
QuickFind の仕組み • 続いて merge(2, 3) が行われると 0 1 2
3 4 0 1 3 2 4
QuickFind の仕組み • 続いて merge(2, 3) が行われると 0 1 2
3 4 0 1 3 2 4
QuickFind の仕組み • 続いて merge(0, 2) が行われると 0 1 2
3 4 0 1 3 2 4
QuickFind の仕組み • 続いて merge(0, 2) が行われると 0 1 2
3 4 0 1 3 2 4
QuickFind の仕組み • 続いて merge(2, 4) が行われると 0 1 2
3 4 0 1 3 2 4
QuickFind の仕組み 0 1 2 3 4 0 1 3
2 4 • 続いて merge(2, 4) が行われると
QuickFind は去っていきました
おや...?
仲間になりたそうにこちらを見ていません …
それでも近づいて かんさつ してみますか? ➢ YESYESYES はいはいはい
彼を かんさつ します...
かんさつ する前に逃げられてしまった!
しかし追いつけたので問題ありません
彼の正体は Undo 可能 UnionFind だったようです! 0 1 2 3 4
それとなく分かる Undo 可能 UnionFind • Undo 可能とは? ◦ 操作列を stack
で管理することで Undo を可能にした • デメリット ◦ 経路圧縮 という工夫ができなくなり、計算量が大きくなる O( α (N) ) → O( log N ) 詳細は略
Undo 可能 UnionFind は去っていきました
おや...?
大きな 森 が近づいてきました
大きな 森 が近づいてきました
大きな 森 が近づいてきました
かんさつ してみましょう
彼の正体は 削除可能 UnionFind だったようです!
それとなく分からない 削除可能 UnionFind • 削除可能とは? ◦ 平衡二分探索木を中に取り入れた Linc Cut 木
(Euler Tour Tree) を使って削 除を可能にした ◦ そもそもデータ構造としての格が違う • デメリット ◦ できなかったことを可能にしているので計算量が大きくなる O( α (N) ) → O( log2 N ) 詳細は略
削除可能 UnionFind は去っていきました
どうやら近くの UnionFind はいなくなってし まったようです...
ご清聴ありがとうございました! 紹介しきれなかった親戚 • 部分永続 UnionFind • 完全永続 UnionFind • 重み付き
UnionFind • 重み付き Undo 可能 UnionFind など