$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWSを活用したAIサービス開発
Search
Yasuhiro Matsuda
December 06, 2024
Technology
0
79
AWSを活用したAIサービス開発
石川県中小企業診断士会「AIシンポジウム2024」
でお話ししたスライドです
Yasuhiro Matsuda
December 06, 2024
Tweet
Share
More Decks by Yasuhiro Matsuda
See All by Yasuhiro Matsuda
いしかわ暮らしセミナー~知って安心!移住とお金講座~
matyuda
0
71
AI活用ワークショップ
matyuda
0
94
AIを活用した広報と事業計画を一気に学ぶワークショップ
matyuda
0
78
AWSを活用したAIサービス開発(フルバージョン)
matyuda
0
88
マーケティング実践とデジタル活用
matyuda
0
160
カンタンAI活用術
matyuda
0
140
スタートアップ企業の支援のあり方
matyuda
0
71
利益を生まない情報セキュリティとバックアップに投資する重要性
matyuda
0
130
いしかわ暮らしセミナー~移住にまつわるお金の話~
matyuda
0
260
Other Decks in Technology
See All in Technology
useEffectってなんで非推奨みたいなこと言われてるの?
maguroalternative
10
6.4k
Ryzen NPUにおけるAI Engineプログラミング
anjn
0
250
モバイルゲーム開発におけるエージェント技術活用への試行錯誤 ~開発効率化へのアプローチの紹介と未来に向けた展望~
qualiarts
0
600
著者と読み解くAIエージェント現場導入の勘所 Lancers TechBook#2
smiyawaki0820
12
5.7k
Sansanが実践する Platform EngineeringとSREの協創
sansantech
PRO
1
110
プロダクトマネジメントの分業が生む「デリバリーの渋滞」を解消するTPMの越境
recruitengineers
PRO
3
660
第4回 「メタデータ通り」 リアル開催
datayokocho
0
110
プロダクトマネージャーが押さえておくべき、ソフトウェア資産とAIエージェント投資効果 / pmconf2025
i35_267
2
550
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
180
乗りこなせAI駆動開発の波
eltociear
1
680
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
1
140
AWS Bedrock AgentCoreで作る 1on1支援AIエージェント 〜Memory × Evaluationsによる実践開発〜
yusukeshimizu
4
310
Featured
See All Featured
Navigating Team Friction
lara
191
16k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Balancing Empowerment & Direction
lara
5
790
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
How GitHub (no longer) Works
holman
316
140k
Typedesign – Prime Four
hannesfritz
42
2.9k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Building an army of robots
kneath
306
46k
How STYLIGHT went responsive
nonsquared
100
5.9k
Transcript
AWSを活用した AIサービス開発 2024/12/6 AWS Community Builder 中小企業診断士 松田 康宏 石川県中小企業診断士会AIシンポジウム
仕事 ▮ AWSを活用した辞書検索サービスDONGRIの インフラエンジニア(イースト株式会社) 士業資格 ▮ 情報処理安全確保支援士 中小企業診断士 ファイナンシャル・プランニング技能士2級(AFP) 主な活動
▮ 石川県中小企業診断士会 AI研究会 AWS Community Builder 白山市内の中学校PTA会長 座右の銘 ▮ 一塁ベースを持って二塁に盗塁する 松田 康宏 まつだ やすひろ 2
経歴 比較.com株式会社 /東京都 2005 年 4 月 ~2006 年 10
月 (2006年3月 東証マザーズ上場) 株式会社エンブレム/東京都 (三谷産業株式会社子会社) 2006 年 11 月 ~2011 年 4 月 福島印刷株式会社/石川県 2011 年 5 月~2020年12月 神奈川県宮前区に引越 株式会社三省堂/東京都 2004年 4 月 (2002年10月) ~2005 年 3 月 石川県白山市(旧:松任市)に生まれる 東京都江戸川区に引越 石川県白山市にUターン 千葉県船橋市に引越 中小企業診断士 登録 FP2級取得 イースト株式会社/東京都 2021 年 1 月~現在 東京都府中市に引越 3
今ある業務に簡単にAIを組み込み、 定型業務の時間の削減に寄与できるか 本日持ち帰っていただきたいこと 4
• AIとデータの関連について • AIを活用した課題解決とマーケティング事例について 本日のお品書き 5 フルバージョンのお品書き をご覧になりたい方はこちら
6 AIとデータの関連について
選択したモデル に対して入力した 内容に従って、出 力を返すというシ ンプルな仕組み 現在は用途に応 じてサービスを使 い分けているの が実情 AIの仕組み
9 出所:Amazon Bedrock Overview https://pages.awscloud.com/rs/112-TZM-766/images/AWS-Black- Belt_2024_Amazon-Bedrock-Overview_v1.pdf
モデルがあらかじ め学習したデータ をもとに回答する (出所は聞けば答 えてくれる) チャット 10
あらかじめ登録し たストレージや Webサイトの情報 をもとに回答する (出所が付加され る) RAGチャット 11
汎用的なAIでは、あまり意味が ない。 業務に特化していることが求め られる。 ※答えを得るなら、その道の専 門家に聞きたいハズ 但し、RAGの部分にランニング コストがかかることが問題。 検索拡張生成 12
出所: https://pages.awscloud.com/rs/112-TZM- 766/images/AWS-Black-Belt_2024_Amazon- Bedrock-Overview_v1.pdf
私たちが利用して いる推論モデル ができるまでには 以下のような流れ がある 推論モデルができるまで 15 出所: https://pages.awscloud.com/rs/112-TZM- 766/images/20190206_AWS_BlackBelt_SageMaker_part1.pdf
ラスベガスでre:Invent2024開催中 16 6つのホテルで開催されており、昨年は全世界から5万名(日本人は1,700名)が 参加する世界最大級のカンファレンスイベント
皆さん大好きAmazonの子会社 AWSとは 17 出所: https://www.aboutamazon.jp/what-we-do/amazon-web-services Werner Vogelsを囲んで記念撮影(AWS Summit Japan 2024)
日々増え続ける使用可能なモデル 18 2024/8/24現在(32モデル) 2024/12/5現在(47モデル)
これから国内でも普及していく可能性のあるサービス① ジャスト・ウォークアウト ライドシェア 19
これから国内でも普及していく可能性のあるサービス② Split 20
12月3日のre:Inventで発表になったばかりのモデル 21 Amazon Nova Micro 低コストかつ小さなレイテン シでテキストのみを処理す るモデル Amazon Nova
Lite 低コストかつ高速な、画像、 動画、テキストによる入力 に対応したマルチモーダル なモデル Amazon Nova Pro 精度、スピード、コストの最 適な組み合わせで幅広い タスクに対応する高性能な マルチモーダルモデル
なぜクラウドなのか 22 完全従量制だから 試してダメならすぐ やめられる 大企業ではなく、 中小企業にこそ 使ってほしい
• 作業の効率化 • 人材不足への対応 • 品質の安定化 • アイディア出し • 定型業務時間の削
減による非定型業 務の時間捻出 なぜ私たちはAIを使うのでしょうか? 26 出所: https://internet.watch.impress.co.jp/docs/topic/special/1566213.html#040_l.jpg
29 AIを活用した課題解決と マーケティング事例について
生成AIがあるから使うのではなく、課題解決のための手段として活かしましょう! 生成AI導入は解題解決の手段であり目的ではありません 30 出所:SoftBank World2024(2024/10/04) https://sbw.tm.softbank.jp/lp/
公式LINEにAIを組み込む AWSを活用したAIサービス開発事例 39 出所: https://qiita.com/fujimo-22/items/bde4d041b4cf4d43edd9 本日のモデルは、 Anthropic Claude Instantを利用
参考)チャットbotを活用した事例 出所: https://www.east-education.jp/ 40 イースト株式会社 • 従来電話やメールでの 問い合わせが多かった が、チャットbot導入に より問合せ数が減少
• 顧客対応工数削減に つながっている
AIを活用するために欠かせないものがデータ 出所:文章生成AI利活用に関するガイドライン p.27 https://www.digitalservice.metro.tokyo.lg.jp/documents/d/digitalservice/ai_guideline/ 41 適切な回答を得られるようにする ためには、膨大なデータを読み込 みさせる必要がある
なぜデータが大事なのでしょうか? 出所: https://www.sbbit.jp/article/cont1/28284 42 データは21世紀の石油 「世界ICTサミット2014」に登壇した 日本アイ・ビー・エム 代表取締役社 長 マーティン・イェッター氏の講演
データは人、モノ、カネに続く 第四の経営資源
目先のAIの動向を追い求め続けてレッドオーシャンに突入することは決して 望ましくなく、ブルーオーシャンを念頭に置いたビジネスモデルであったり、 企業理念が大変重要になる Amazon.com 前CEOのジェフ・ベゾス 「変わらないものは何か」を自問すること 顧客が「変わらず求め続けるもの」 「選択肢はより多く、価格はより安く、 配達はより迅速で確実に」 これをもとに戦略を立てる
変わるものよりも変わらないものに目を向けましょう! 出所: https://forbesjapan.com/articles/detail/31696 52
53 ご清聴ありがとうございました