tool is able to compile the full range of metrics discussed here, the final phase of development—to be completed in the Fall of 2015—will be to present the outcome via a web-friendly reporting and visualization tool that gives users easy access to the data for further analysis. While we would be pleased to see more sophisticated schemes to apportion scholarly credit and facilitate knowledge discovery18–20 catch on, these straightforward metrics fulfill an immediate need to quantify data impact in a way that all of the stakeholders—including data managers, administrators, and researchers—can understand today. References 1. Priem, J., Piwowar, H. A. & Hemminger, B. M. Altmetrics in the wild: Using social media to explore scholarly impact. arXiv:1203.4745 [cs.DL] (2012). 2. Pfeiffenberger, H. & Carlson, D. "Earth System Science Data" (ESSD)—A peer reviewed journal for publication of data. D-Lib Magazine 17 doi:10.1045/january2011-pfeiffenberger (2011). 3. More bang for your byte. Scientific Data 1, 140010 (2014). 4. Kratz, J. E. & Strasser, C. Researcher perspectives on publication and peer review of data. PLoS ONE 10, e0117619 )2015). 5. Kratz, J. E. & Strasser, C. Making Data Count survey responses. University of California, Office of the President http://www.dx.doi. org/10.5060/D8H59D (2015). 6. Tenopir, C. et al. Data sharing by scientists: practices and perceptions. PLoS ONE 6, e21101 (2011). 7. Akers, K. G. & Doty, J. Disciplinary differences in faculty research data management practices and perspectives. International Journal of Digital Curation 8, 5–26 (2013). 8. Wallis, J. C., Rolando, E. & Borgman, C. L. If we share data, will anyone use them? Data sharing and reuse in the long tail of science and technology. PLoS ONE 8, e67332 (2013). 9. Aydinoglu, A. U., Suomela, T. & Malone, J. Data management in astrobiology: challenges and opportunities for an inter- disciplinary community. Astrobiology 14, 451–461 (2014). 10. Bobrow, M. et al. Establishing incentives and changing cultures to support data access. Wellcome Trust http://www.wellcome.ac. uk/stellent/groups/corporatesite/@msh_peda/documents/web_document/wtp056495.pdf (2014). 11. Costas, R., Meijer, I., Zahedi, Z. & Wouters, P. The value of research data: metrics for datasets from a cultural and technical point of view. K nowledge Exchange http://www.knowledge-exchange.info/datametrics (2013). 12. Robinson-Garcia, N., Jiménez-Contreras, E. & Torres-Salinas, D. Analyzing data citation practices according to the Data Citation Index. arXiv:150106285 [cs] (2015). 13. Sieber, P. J. E. & Trumbo, B. E. (Not) Giving credit where credit is due: citation of data sets. Science and Engineering Ethics 1, 11–20 (1995). http://doi.org/10.1038/sdata.2015.39 5. Kratz, J. E. & Strasser, C. Making Data Count survey responses. University of California, Office of the President http://www.dx.doi.org/10.5060/D8H59D (2015)