Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SCM Solutions - Metrics, Trade-offs and Beyond -
Search
MIKIO KUBO
December 16, 2023
Business
1
170
SCM Solutions - Metrics, Trade-offs and Beyond -
Supply Chain PlanningのSolutionをMetricsとそのトレードオフを中心にまとめてみました.
ついでにMOAI技術を用いた新しいソリューションを提案しています.
MIKIO KUBO
December 16, 2023
Tweet
Share
More Decks by MIKIO KUBO
See All by MIKIO KUBO
Mathematical Optimization +Artificial Intelligence =MOAI
mickey_kubo
1
360
Visualization
mickey_kubo
2
460
機械学習と最適化の融合動的ロットサイズ決定問題を例として
mickey_kubo
2
490
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
mickey_kubo
2
750
サプライチェーン基本分析システム SCBAS
mickey_kubo
3
140
理論と実務を繋ぐには V
mickey_kubo
2
1.1k
数理最適化と機械学習の融合アプローチ-分類と新しい枠組みと応用-
mickey_kubo
5
1.5k
Other Decks in Business
See All in Business
株式会社miibo|採用デック
natsumidnx
0
140
enechain company deck
enechain
PRO
8
94k
Sales Marker Culture Book(English)
salesmarker
PRO
1
3k
重厚長大なものづくり企業におけるプロダクトマネジメントの挑戦と苦悩 / pmconf2024
tkchy
0
4.9k
LayerX AI・LLM Division Deck
layerx
PRO
0
990
株式会社ispec 会社紹介資料
emikamihara
0
5.9k
産業用自家消費型太陽光300kW+産業用蓄電池500kWh 投資対効果(ROI)・投資回収期間シミュレーション結果(エネがえるBiz診断レポートサンプル)
satoru_higuchi
PRO
0
180
いま、データに必要な解像度
hik0107
33
12k
協会概要資料_日本カスタマーサクセス協会_24.12.
jpncsa
0
300
Creating Creators in the age of Generative AI - In SIGGRAPH ASIA 2024
o_ob
0
120
Japan Open Chain ホワイトペーパー
gugroup
0
230
ログラス会社紹介資料 新卒採用 ビジネス職[経営幹部候補]/ Loglass Company Deck
loglass2019
0
1.4k
Featured
See All Featured
A Philosophy of Restraint
colly
203
16k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.3k
Become a Pro
speakerdeck
PRO
26
5k
A designer walks into a library…
pauljervisheath
204
24k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.3k
Music & Morning Musume
bryan
46
6.2k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Designing for Performance
lara
604
68k
RailsConf 2023
tenderlove
29
940
Making Projects Easy
brettharned
116
5.9k
Transcript
SCM Solutions Metrics, Trade-offs and Beyond MOAI Tech Labo
SCM Solutions - Metrics ⼤規模インスタンスでの求解可能性 (size) 計算速度 (speed) 解の誤差 (error)
ロバスト性 (robustness) 拡張可能性 (extendability) 適応範囲 (range) 導⼊速度/費⽤ (implementation time/cost)
Size ⼤規模インスタンス(問題に数値を⼊れたもの)での求解可能性 ⼤規模でも解ける ⼩規模でないと 解けない Greedy Local search Exact solution
methods metaheuristics 実際のSCMの多くの問題は NP-hard Sizeの⼤きいインスタンスに対して ⾼速に誤差の⼩さい解を⽣成する ことは(おそらく)できない
Speed 計算速度 終了判定基準をユーザー が指定し,その中で最良解を探索する インスタンスのサイズに 対して指数オーダーで 計算量が増⼤ Greedy Local search
Exact solution methods metaheuristics インスタンスのサイズに 対する多項式オーダーで 計算が終わる
Error 解の誤差(精度 accuracy / 質 quality) ⼤きな相対誤差 Greedy Local search
Exact solution methods metaheuristics 厳密解もしくは 相対誤差の保証を もった解 途中で打ち切ることによって 近似解法としても使える 近似解法
Robustness ロバスト性 インスタンスが 変わると悪い解 を算出する Greedy Local search Exact solution
methods metaheuristics 様々なインスタンス が解ける(ただし 計算時間は変化) 少数のインスタンス に対して上⼿く動く 近似解法は,インスタンス パラメータの変化に弱い すべてのインスタンス テストしたインスタンス 新しいインスタンス
Spped, Size, Error のトレードオフ ⼩規模 ⼤規模 低速 ⾼速 Speed Size
誤差⼤ 厳密解(誤差⼩) Error Exact solution methods Greedy Local Search Metaheuristics Sizeの⼤きいインスタンスに対して ⾼速に誤差の⼩さい解を⽣成する ことは(おそらく)できない NP-困難性
パラダイムシフト すべてのインスタンスの集合 実際のインスタンスの集合 すべてのインスタンスに対して ⾼速に誤差の⼩さい解を⽣成する ことは(おそらく)できない たくさんの過去の 実際のインスタンス 過去のたくさんの実際問題の インスタンスと対応する解がある
対応する解 NP-困難性 すべてのインスタンスの集合 機械(深層)学習の利⽤ ?
MOAIによるNP-困難性の克服 ⼤規模でも解ける ⼩規模でないと 解けない 低速 ⾼速 Speed Size 誤差⼤ 厳密解(誤差⼩)
Error Exact solution methods Greedy Local Search Metaheuristics MOAI (機械学習+数理最適化) ⼤規模インスタンスに対する 誤差の⼩さい解を⾼速計算 +
Extendability 拡張可能性 問題の拡張が容易 単純でモジュール化 されたアルゴリズム 複雑でモジュール化されていない アルゴリズム 問題の拡張が難しい (もしくは多⼤な 追加費⽤/時間がかかる)
数理最適化モデリング⾔語で 記述可能な付加条件 数理最適化モデリング⾔語で 記述が難しい付加条件 買収によって様々な問題に対応 開発者の退職によってメンテが悪化 新しい機能の追加が不可能
Range 適応範囲 狭い: 特化した問題に 対するソリューション Optimind Lyna Logics Asprova Flexche
Forecast Pro SAP IBP Panasonic (Blue Yonder; JDA; i2) c3.ai o9solutions Coupa (Llamasoft) Optilogic 広い: SCMの幅広い範囲 をカバー Anaplan Streamline • 配送 • スケジューリング • 予測 に対する個別ソリューション • ネットワーク設計 • 配送 • 多段階在庫 • 予測 • 多段階在庫 • + ERP 得意分野はあるが ほとんどすべての機能 + ERP
Implementation time/cost 導⼊速度/費⽤ ⽐較的安価で短時間 Coupa (Llamasoft) ⾼価で時間がかかる プログラム設計者がすでに退職 Optilogic 数理最適化モデル
をユーザーに公開 DB Schema GUI プログラム設計者が現職
Extendability, Range, Impl. Timeのトレードオフ 拡張が容易 拡張が難しい Extendability 狭い 広い Range
安価で短時間 Implementation time/ cost ⾼価で時間がかかる SAP IBP Panasonic (BY) c3.ai o9solutions Optimind Lyna Logics Asprova Flexche Forecast Pro Coupa Optilogic Anaplan Streamline
MOAIソリューション 拡張が容易 拡張が難しい Extendability 狭い 広い Range 安価で短時間 Implementation time/
cost ⾼価で時間がかかる SAP IBP Panasonic (BY) c3.ai o9solutions Optimind Lyna Logics Asprova Flexche Forecast Pro Coupa Optilogic Anaplan Streamline + MOAI Supply Chain全体をカバー 最先端の最適化ソリューション モジュール化とAPI公開によって ユーザーがモデルを拡張可能