Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ABEJA Innovation Meetup NIPS PointNet++
Search
望月紅葉さんと幸せな家庭を築きたい
January 01, 2018
Programming
1
490
ABEJA Innovation Meetup NIPS PointNet++
望月紅葉さんと幸せな家庭を築きたい
January 01, 2018
Tweet
Share
More Decks by 望月紅葉さんと幸せな家庭を築きたい
See All by 望月紅葉さんと幸せな家庭を築きたい
shadow-detection-with-conditional-generative-adversarial-networks
momijifullmoon
0
150
unsupervised-learning-of-depth-and-ego-motion-from-monocular-video-using-3d-geometric-constraints
momijifullmoon
0
430
NIPS2017reading_3Dreconstruction
momijifullmoon
0
1.5k
Other Decks in Programming
See All in Programming
Jakarta EE Core Profile and Helidon - Speed, Simplicity, and AI Integration
ivargrimstad
0
260
AI OCR API on Lambdaを Datadogで可視化してみた
nealle
0
220
LLMOpsのパフォーマンスを支える技術と現場で実践した改善
po3rin
8
990
MCPで実現するAIエージェント駆動のNext.jsアプリデバッグ手法
nyatinte
7
990
パスタの技術
yusukebe
1
540
Oracle Database Technology Night 92 Database Connection control FAN-AC
oracle4engineer
PRO
1
340
KessokuでDIでもgoroutineを活用する / Go Connect #6
mazrean
0
120
詳解!defer panic recover のしくみ / Understanding defer, panic, and recover
convto
0
200
Kiroの仕様駆動開発から見えてきたAIコーディングとの正しい付き合い方
clshinji
1
180
『リコリス・リコイル』に学ぶ!! 〜キャリア戦略における計画的偶発性理論と変わる勇気の重要性〜
wanko_it
1
620
Namespace and Its Future
tagomoris
6
660
個人軟體時代
ethanhuang13
0
260
Featured
See All Featured
Designing for Performance
lara
610
69k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.8k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Producing Creativity
orderedlist
PRO
347
40k
A Modern Web Designer's Workflow
chriscoyier
696
190k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Faster Mobile Websites
deanohume
309
31k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
284
13k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Transcript
PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space NIPSಡΈձˏABEJA 1
PointNet++ͷ֓ཁ ▸ ஶऀ: Charles R. Qi, Li Yi, Hao Su,
Leonidas J. Guibas ɹɹ ˏελϯϑΥʔυ ▸ ֓ཁ ▸ ܈Λͦͷ··ೖྗ͠ɺͦͷΫϥεྨɺ SegmentationΛߦ͏PointNetͷվྑใࠂ ▸ PointNetͷऑͰ͋ͬͨ܈ີґଘΛࠀɺ ͓Αͼ֊తͳֶशΛͰ͖ΔΑ͏ʹ ʮSampling Layerʯͱ ʮGrouped LayerʯΛఏҊ 2
എܠ ▸ ̏࣍ݩͷधཁ 3 ࣗಈӡస AR ઃܭ
ͷྲྀΕ ▸ എܠ ▸ PointNetʹ͍ͭͯ ▸ ख๏ ▸ ࣮ݧ ▸
·ͱΊ 4
എܠ ▸ ̏࣍ݩͷσʔλ 5 ɹɹ܈ɹɹ ɹɹϝογϡɹɹ Voxel Өɹ RGB-D
എܠ ▸ طଘͷख๏ ▸ ܈Λผͷදݱʹม͍ͯͨ͠ 6 Unstructured, Unordered ͳ܈Λͦͷ··ೖྗ Ͱ͏·͍͘͘Α͏ͳख๏
==> PointNetΛఏҊ@CVPR2017
PointNetͷ͓͞Β͍ ▸ ղ͘λεΫ 7 Classification Segmentation Scene Parsing ೖྗ
PointNetͷ͓͞Β͍ ▸ ઃܭ 8
PointNetͷ͓͞Β͍ ▸ ՝ 9 PointNet֤ʹ͓͍ͯɺlocalͷใ͕ফ͑Δ ֊తಛֶशͰ͖ͳ͍ ෳ֊ͷநԽͰ͖ͳ͍ GlobalͷಛֶशͷΈ ͋Δ͘͠શͯͷ
PointNetͷ͓͞Β͍ ▸ localͷใ͕ফ͑Δͱ 10 globalͷใɺઈର࠲ඪʹґଘͯ͠͠·͏ͷͰɺ segmentationͰະͷͷʹରԠͰ͖ͳ͍
PointNet++Ͱ ▸ ֊తֶश ▸ localͳใΛ͢ 11 ▸ ܈ີʹϩόετʹ
ΞʔΩςΫνϟ 12
֊తͳֶश 13
֊తͳֶश ▸ Sampling layer ▸ Farthest Point Sampling (FPS) 14
https://www.groundai.com/project/parametric-manifold-learning-via-sparse-multidimensional-scaling/
▸ Grouping layer ▸ radius based ball query ֊తͳֶश 15
PointNet layer Convolution layer Input Δԋࢉ ԋࢉͰݟΔ ൣғ Radius ball query ɹ܈ɹ PointNetʢॱ൪ීวʣ ߦྻʢݻఆͷϐΫηϧʣ ΈࠐΈʢॱ൪ґଘʣ ɹີͳߦྻɹ
֊తͳֶश ▸ PointNet layer 16 N1ݸͷʹର͠ C1ݸͷಛ࡞ ॏΈshare
֊తͳֶश ▸ PointNet layer 17 x1,y1,z1,ΫΤϦ1,ಛ1 x2,y2,z2,ΫΤϦ2,ಛ2 x3,y3,z3,ΫΤϦ3,ಛ3 xN1,yN1,zN1,ΫΤϦN1ಛN1 MLP
MLP MLP MLP x1,y1,z1,ಛ1 x2,y2,z2,ಛ2 x3,y3,z3,ಛ3 xN1,yN1,zN1,ಛN1 ॏΈShare
ີґଘࠀख๏ ▸ ̏࣍ݩͷଌఆͰ܈ີ͕Ұൠతͳ՝ 18 ==> ܈ີʹϩόετʹ͍ͨ͠
ີґଘࠀख๏ ▸ SamplingͱGroupingΛෳ༻ҙ 19 MRGͷํ͕࣍ͰपลͱͷಛΛर͑Δ
Classification ࣮ݧ 20
▸ ModelNet40ʹରͯ͠ Classification ࣮ݧ 21 PointNetʹൺɺPointNet++ྨਫ਼্ CNNϕʔεͷख๏ʹউར
ີґଘ࣮ݧ 22 ಛʹ܈͕গͳ͍ͱɺMRG͕༗ޮ
Segmentation ࣮ݧ 23 ૠɿɹIDW (ٯڑՃॏ) Unitpointnet: ֤ͰMLP
Segmentation ࣮ݧ ▸ ݁Ռ 24 MSGΛೖΕΔ͜ͱͰɺෆۉҰͳ܈Ͱ͏·͍͘͘
Segmentation ࣮ݧ ▸ ݁Ռ 25 PointNetΑΓՈ۩ͷsegmentation্͕ख͍͘͘
ඇϢʔΫϦου ڑۭؒͰͷ࣮ݧ 26 WKS , HKS, multi-scale Gaussian curvature
Feature Visualization ▸ ࠷ॳͷͷॏΈΛՄࢹԽ 27 ฏ໘ɺίʔφʔͱ͔Λֶश
·ͱΊ ▸ PointNetΛ֦ுͨ͠ख๏PointNet++Λൃද ▸ CVPR2017=>NIPS2017ʹ̍ຊ௨͍ͯ͠Δɻɻɻ ▸ Sampling layerɺGrouped layerΛऔΓೖΕ֊తͳֶश ▸
MRGɺMSGΛఏҊ͠ɺ܈ີʹґଘ͠ͳֶ͍श ▸ ̏࣍ݩ܈ͷσʔληοτʹରͯ͠ɺSoTAୡ ▸ ݱʹߦͬͨײ ▸ ஶऀͱ͢͜ͱͰࡉ͔ͳใΛर͑Δ 28