Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ABEJA Innovation Meetup NIPS PointNet++
Search
望月紅葉さんと幸せな家庭を築きたい
January 01, 2018
Programming
1
480
ABEJA Innovation Meetup NIPS PointNet++
望月紅葉さんと幸せな家庭を築きたい
January 01, 2018
Tweet
Share
More Decks by 望月紅葉さんと幸せな家庭を築きたい
See All by 望月紅葉さんと幸せな家庭を築きたい
shadow-detection-with-conditional-generative-adversarial-networks
momijifullmoon
0
140
unsupervised-learning-of-depth-and-ego-motion-from-monocular-video-using-3d-geometric-constraints
momijifullmoon
0
380
NIPS2017reading_3Dreconstruction
momijifullmoon
0
1.5k
Other Decks in Programming
See All in Programming
cmp.Or に感動した
otakakot
3
170
どうして僕の作ったクラスが手続き型と言われなきゃいけないんですか
akikogoto
1
120
subpath importsで始めるモック生活
10tera
0
300
카카오페이는 어떻게 수천만 결제를 처리할까? 우아한 결제 분산락 노하우
kakao
PRO
0
110
タクシーアプリ『GO』のリアルタイムデータ分析基盤における機械学習サービスの活用
mot_techtalk
4
1.4k
【Kaigi on Rails 2024】YOUTRUST スポンサーLT
krpk1900
1
330
Why Jakarta EE Matters to Spring - and Vice Versa
ivargrimstad
0
1.1k
「今のプロジェクトいろいろ大変なんですよ、app/services とかもあって……」/After Kaigi on Rails 2024 LT Night
junk0612
5
2.2k
弊社の「意識チョット低いアーキテクチャ」10選
texmeijin
5
24k
ふかぼれ!CSSセレクターモジュール / Fukabore! CSS Selectors Module
petamoriken
0
150
3 Effective Rules for Using Signals in Angular
manfredsteyer
PRO
0
110
Laravel や Symfony で手っ取り早く OpenAPI のドキュメントを作成する
azuki
2
120
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
169
14k
Into the Great Unknown - MozCon
thekraken
32
1.5k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
329
21k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Six Lessons from altMBA
skipperchong
27
3.5k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
For a Future-Friendly Web
brad_frost
175
9.4k
How to Ace a Technical Interview
jacobian
276
23k
Designing for Performance
lara
604
68k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
Site-Speed That Sticks
csswizardry
0
25
Building a Scalable Design System with Sketch
lauravandoore
459
33k
Transcript
PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space NIPSಡΈձˏABEJA 1
PointNet++ͷ֓ཁ ▸ ஶऀ: Charles R. Qi, Li Yi, Hao Su,
Leonidas J. Guibas ɹɹ ˏελϯϑΥʔυ ▸ ֓ཁ ▸ ܈Λͦͷ··ೖྗ͠ɺͦͷΫϥεྨɺ SegmentationΛߦ͏PointNetͷվྑใࠂ ▸ PointNetͷऑͰ͋ͬͨ܈ີґଘΛࠀɺ ͓Αͼ֊తͳֶशΛͰ͖ΔΑ͏ʹ ʮSampling Layerʯͱ ʮGrouped LayerʯΛఏҊ 2
എܠ ▸ ̏࣍ݩͷधཁ 3 ࣗಈӡస AR ઃܭ
ͷྲྀΕ ▸ എܠ ▸ PointNetʹ͍ͭͯ ▸ ख๏ ▸ ࣮ݧ ▸
·ͱΊ 4
എܠ ▸ ̏࣍ݩͷσʔλ 5 ɹɹ܈ɹɹ ɹɹϝογϡɹɹ Voxel Өɹ RGB-D
എܠ ▸ طଘͷख๏ ▸ ܈Λผͷදݱʹม͍ͯͨ͠ 6 Unstructured, Unordered ͳ܈Λͦͷ··ೖྗ Ͱ͏·͍͘͘Α͏ͳख๏
==> PointNetΛఏҊ@CVPR2017
PointNetͷ͓͞Β͍ ▸ ղ͘λεΫ 7 Classification Segmentation Scene Parsing ೖྗ
PointNetͷ͓͞Β͍ ▸ ઃܭ 8
PointNetͷ͓͞Β͍ ▸ ՝ 9 PointNet֤ʹ͓͍ͯɺlocalͷใ͕ফ͑Δ ֊తಛֶशͰ͖ͳ͍ ෳ֊ͷநԽͰ͖ͳ͍ GlobalͷಛֶशͷΈ ͋Δ͘͠શͯͷ
PointNetͷ͓͞Β͍ ▸ localͷใ͕ফ͑Δͱ 10 globalͷใɺઈର࠲ඪʹґଘͯ͠͠·͏ͷͰɺ segmentationͰະͷͷʹରԠͰ͖ͳ͍
PointNet++Ͱ ▸ ֊తֶश ▸ localͳใΛ͢ 11 ▸ ܈ີʹϩόετʹ
ΞʔΩςΫνϟ 12
֊తͳֶश 13
֊తͳֶश ▸ Sampling layer ▸ Farthest Point Sampling (FPS) 14
https://www.groundai.com/project/parametric-manifold-learning-via-sparse-multidimensional-scaling/
▸ Grouping layer ▸ radius based ball query ֊తͳֶश 15
PointNet layer Convolution layer Input Δԋࢉ ԋࢉͰݟΔ ൣғ Radius ball query ɹ܈ɹ PointNetʢॱ൪ීวʣ ߦྻʢݻఆͷϐΫηϧʣ ΈࠐΈʢॱ൪ґଘʣ ɹີͳߦྻɹ
֊తͳֶश ▸ PointNet layer 16 N1ݸͷʹର͠ C1ݸͷಛ࡞ ॏΈshare
֊తͳֶश ▸ PointNet layer 17 x1,y1,z1,ΫΤϦ1,ಛ1 x2,y2,z2,ΫΤϦ2,ಛ2 x3,y3,z3,ΫΤϦ3,ಛ3 xN1,yN1,zN1,ΫΤϦN1ಛN1 MLP
MLP MLP MLP x1,y1,z1,ಛ1 x2,y2,z2,ಛ2 x3,y3,z3,ಛ3 xN1,yN1,zN1,ಛN1 ॏΈShare
ີґଘࠀख๏ ▸ ̏࣍ݩͷଌఆͰ܈ີ͕Ұൠతͳ՝ 18 ==> ܈ີʹϩόετʹ͍ͨ͠
ີґଘࠀख๏ ▸ SamplingͱGroupingΛෳ༻ҙ 19 MRGͷํ͕࣍ͰपลͱͷಛΛर͑Δ
Classification ࣮ݧ 20
▸ ModelNet40ʹରͯ͠ Classification ࣮ݧ 21 PointNetʹൺɺPointNet++ྨਫ਼্ CNNϕʔεͷख๏ʹউར
ີґଘ࣮ݧ 22 ಛʹ܈͕গͳ͍ͱɺMRG͕༗ޮ
Segmentation ࣮ݧ 23 ૠɿɹIDW (ٯڑՃॏ) Unitpointnet: ֤ͰMLP
Segmentation ࣮ݧ ▸ ݁Ռ 24 MSGΛೖΕΔ͜ͱͰɺෆۉҰͳ܈Ͱ͏·͍͘͘
Segmentation ࣮ݧ ▸ ݁Ռ 25 PointNetΑΓՈ۩ͷsegmentation্͕ख͍͘͘
ඇϢʔΫϦου ڑۭؒͰͷ࣮ݧ 26 WKS , HKS, multi-scale Gaussian curvature
Feature Visualization ▸ ࠷ॳͷͷॏΈΛՄࢹԽ 27 ฏ໘ɺίʔφʔͱ͔Λֶश
·ͱΊ ▸ PointNetΛ֦ுͨ͠ख๏PointNet++Λൃද ▸ CVPR2017=>NIPS2017ʹ̍ຊ௨͍ͯ͠Δɻɻɻ ▸ Sampling layerɺGrouped layerΛऔΓೖΕ֊తͳֶश ▸
MRGɺMSGΛఏҊ͠ɺ܈ີʹґଘ͠ͳֶ͍श ▸ ̏࣍ݩ܈ͷσʔληοτʹରͯ͠ɺSoTAୡ ▸ ݱʹߦͬͨײ ▸ ஶऀͱ͢͜ͱͰࡉ͔ͳใΛर͑Δ 28