Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ABEJA Innovation Meetup NIPS PointNet++
Search
望月紅葉さんと幸せな家庭を築きたい
January 01, 2018
Programming
1
490
ABEJA Innovation Meetup NIPS PointNet++
望月紅葉さんと幸せな家庭を築きたい
January 01, 2018
Tweet
Share
More Decks by 望月紅葉さんと幸せな家庭を築きたい
See All by 望月紅葉さんと幸せな家庭を築きたい
shadow-detection-with-conditional-generative-adversarial-networks
momijifullmoon
0
150
unsupervised-learning-of-depth-and-ego-motion-from-monocular-video-using-3d-geometric-constraints
momijifullmoon
0
460
NIPS2017reading_3Dreconstruction
momijifullmoon
0
1.5k
Other Decks in Programming
See All in Programming
Web エンジニアが JavaScript で AI Agent を作る / JSConf JP 2025 sponsor session
izumin5210
4
1.7k
Tangible Code
chobishiba
3
570
CSC509 Lecture 10
javiergs
PRO
0
180
仕様がそのままテストになる!Javaで始める振る舞い駆動開発
ohmori_yusuke
8
4.3k
The Missing Link in Angular's Signal Story: Resource API and httpResource
manfredsteyer
PRO
0
130
ゼロダウンタイムでミドルウェアの バージョンアップを実現した手法と課題
wind111
0
150
オフライン対応!Flutterアプリに全文検索エンジンを実装する @FlutterKaigi2025
itsmedreamwalker
2
210
CSC509 Lecture 11
javiergs
PRO
0
310
Amazon Bedrock Knowledge Bases Hands-on
konny0311
0
150
CSC509 Lecture 13
javiergs
PRO
0
250
PyCon mini 東海 2025「個人ではじめるマルチAIエージェント入門 〜LangChain × LangGraphでアイデアを形にするステップ〜」
komofr
3
990
Kotlinで実装するCPU/GPU 「協調的」パフォーマンス管理
matuyuhi
0
410
Featured
See All Featured
Statistics for Hackers
jakevdp
799
220k
Done Done
chrislema
186
16k
GraphQLとの向き合い方2022年版
quramy
49
14k
How to Ace a Technical Interview
jacobian
280
24k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Typedesign – Prime Four
hannesfritz
42
2.9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
320
Side Projects
sachag
455
43k
Practical Orchestrator
shlominoach
190
11k
A Tale of Four Properties
chriscoyier
162
23k
Transcript
PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space NIPSಡΈձˏABEJA 1
PointNet++ͷ֓ཁ ▸ ஶऀ: Charles R. Qi, Li Yi, Hao Su,
Leonidas J. Guibas ɹɹ ˏελϯϑΥʔυ ▸ ֓ཁ ▸ ܈Λͦͷ··ೖྗ͠ɺͦͷΫϥεྨɺ SegmentationΛߦ͏PointNetͷվྑใࠂ ▸ PointNetͷऑͰ͋ͬͨ܈ີґଘΛࠀɺ ͓Αͼ֊తͳֶशΛͰ͖ΔΑ͏ʹ ʮSampling Layerʯͱ ʮGrouped LayerʯΛఏҊ 2
എܠ ▸ ̏࣍ݩͷधཁ 3 ࣗಈӡస AR ઃܭ
ͷྲྀΕ ▸ എܠ ▸ PointNetʹ͍ͭͯ ▸ ख๏ ▸ ࣮ݧ ▸
·ͱΊ 4
എܠ ▸ ̏࣍ݩͷσʔλ 5 ɹɹ܈ɹɹ ɹɹϝογϡɹɹ Voxel Өɹ RGB-D
എܠ ▸ طଘͷख๏ ▸ ܈Λผͷදݱʹม͍ͯͨ͠ 6 Unstructured, Unordered ͳ܈Λͦͷ··ೖྗ Ͱ͏·͍͘͘Α͏ͳख๏
==> PointNetΛఏҊ@CVPR2017
PointNetͷ͓͞Β͍ ▸ ղ͘λεΫ 7 Classification Segmentation Scene Parsing ೖྗ
PointNetͷ͓͞Β͍ ▸ ઃܭ 8
PointNetͷ͓͞Β͍ ▸ ՝ 9 PointNet֤ʹ͓͍ͯɺlocalͷใ͕ফ͑Δ ֊తಛֶशͰ͖ͳ͍ ෳ֊ͷநԽͰ͖ͳ͍ GlobalͷಛֶशͷΈ ͋Δ͘͠શͯͷ
PointNetͷ͓͞Β͍ ▸ localͷใ͕ফ͑Δͱ 10 globalͷใɺઈର࠲ඪʹґଘͯ͠͠·͏ͷͰɺ segmentationͰະͷͷʹରԠͰ͖ͳ͍
PointNet++Ͱ ▸ ֊తֶश ▸ localͳใΛ͢ 11 ▸ ܈ີʹϩόετʹ
ΞʔΩςΫνϟ 12
֊తͳֶश 13
֊తͳֶश ▸ Sampling layer ▸ Farthest Point Sampling (FPS) 14
https://www.groundai.com/project/parametric-manifold-learning-via-sparse-multidimensional-scaling/
▸ Grouping layer ▸ radius based ball query ֊తͳֶश 15
PointNet layer Convolution layer Input Δԋࢉ ԋࢉͰݟΔ ൣғ Radius ball query ɹ܈ɹ PointNetʢॱ൪ීวʣ ߦྻʢݻఆͷϐΫηϧʣ ΈࠐΈʢॱ൪ґଘʣ ɹີͳߦྻɹ
֊తͳֶश ▸ PointNet layer 16 N1ݸͷʹର͠ C1ݸͷಛ࡞ ॏΈshare
֊తͳֶश ▸ PointNet layer 17 x1,y1,z1,ΫΤϦ1,ಛ1 x2,y2,z2,ΫΤϦ2,ಛ2 x3,y3,z3,ΫΤϦ3,ಛ3 xN1,yN1,zN1,ΫΤϦN1ಛN1 MLP
MLP MLP MLP x1,y1,z1,ಛ1 x2,y2,z2,ಛ2 x3,y3,z3,ಛ3 xN1,yN1,zN1,ಛN1 ॏΈShare
ີґଘࠀख๏ ▸ ̏࣍ݩͷଌఆͰ܈ີ͕Ұൠతͳ՝ 18 ==> ܈ີʹϩόετʹ͍ͨ͠
ີґଘࠀख๏ ▸ SamplingͱGroupingΛෳ༻ҙ 19 MRGͷํ͕࣍ͰपลͱͷಛΛर͑Δ
Classification ࣮ݧ 20
▸ ModelNet40ʹରͯ͠ Classification ࣮ݧ 21 PointNetʹൺɺPointNet++ྨਫ਼্ CNNϕʔεͷख๏ʹউར
ີґଘ࣮ݧ 22 ಛʹ܈͕গͳ͍ͱɺMRG͕༗ޮ
Segmentation ࣮ݧ 23 ૠɿɹIDW (ٯڑՃॏ) Unitpointnet: ֤ͰMLP
Segmentation ࣮ݧ ▸ ݁Ռ 24 MSGΛೖΕΔ͜ͱͰɺෆۉҰͳ܈Ͱ͏·͍͘͘
Segmentation ࣮ݧ ▸ ݁Ռ 25 PointNetΑΓՈ۩ͷsegmentation্͕ख͍͘͘
ඇϢʔΫϦου ڑۭؒͰͷ࣮ݧ 26 WKS , HKS, multi-scale Gaussian curvature
Feature Visualization ▸ ࠷ॳͷͷॏΈΛՄࢹԽ 27 ฏ໘ɺίʔφʔͱ͔Λֶश
·ͱΊ ▸ PointNetΛ֦ுͨ͠ख๏PointNet++Λൃද ▸ CVPR2017=>NIPS2017ʹ̍ຊ௨͍ͯ͠Δɻɻɻ ▸ Sampling layerɺGrouped layerΛऔΓೖΕ֊తͳֶश ▸
MRGɺMSGΛఏҊ͠ɺ܈ີʹґଘ͠ͳֶ͍श ▸ ̏࣍ݩ܈ͷσʔληοτʹରͯ͠ɺSoTAୡ ▸ ݱʹߦͬͨײ ▸ ஶऀͱ͢͜ͱͰࡉ͔ͳใΛर͑Δ 28