Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ABEJA Innovation Meetup NIPS PointNet++
Search
望月紅葉さんと幸せな家庭を築きたい
January 01, 2018
Programming
1
490
ABEJA Innovation Meetup NIPS PointNet++
望月紅葉さんと幸せな家庭を築きたい
January 01, 2018
Tweet
Share
More Decks by 望月紅葉さんと幸せな家庭を築きたい
See All by 望月紅葉さんと幸せな家庭を築きたい
shadow-detection-with-conditional-generative-adversarial-networks
momijifullmoon
0
150
unsupervised-learning-of-depth-and-ego-motion-from-monocular-video-using-3d-geometric-constraints
momijifullmoon
0
430
NIPS2017reading_3Dreconstruction
momijifullmoon
0
1.5k
Other Decks in Programming
See All in Programming
What's new in AppKit on macOS 26
1024jp
0
150
型で語るカタ
irof
0
700
dbt民主化とLLMによる開発ブースト ~ AI Readyな分析サイクルを目指して ~
yoshyum
3
1.1k
TypeScriptでDXを上げろ! Hono編
yusukebe
3
760
Startups on Rails in Past, Present and Future–Irina Nazarova, RailsConf 2025
irinanazarova
0
240
20250704_教育事業におけるアジャイルなデータ基盤構築
hanon52_
5
1.1k
20250708_JAWS_opscdk
takuyay0ne
2
130
はじめてのWeb API体験 ー 飲食店検索アプリを作ろうー
akinko_0915
0
140
レベル1の開発生産性向上に取り組む − 日々の作業の効率化・自動化を通じた改善活動
kesoji
0
300
RailsGirls IZUMO スポンサーLT
16bitidol
0
200
システム成長を止めない!本番無停止テーブル移行の全貌
sakawe_ee
1
350
AIエージェントはこう育てる - GitHub Copilot Agentとチームの共進化サイクル
koboriakira
0
760
Featured
See All Featured
Optimizing for Happiness
mojombo
379
70k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
The Cost Of JavaScript in 2023
addyosmani
51
8.6k
Gamification - CAS2011
davidbonilla
81
5.4k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Testing 201, or: Great Expectations
jmmastey
43
7.6k
BBQ
matthewcrist
89
9.7k
What's in a price? How to price your products and services
michaelherold
246
12k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
340
Transcript
PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space NIPSಡΈձˏABEJA 1
PointNet++ͷ֓ཁ ▸ ஶऀ: Charles R. Qi, Li Yi, Hao Su,
Leonidas J. Guibas ɹɹ ˏελϯϑΥʔυ ▸ ֓ཁ ▸ ܈Λͦͷ··ೖྗ͠ɺͦͷΫϥεྨɺ SegmentationΛߦ͏PointNetͷվྑใࠂ ▸ PointNetͷऑͰ͋ͬͨ܈ີґଘΛࠀɺ ͓Αͼ֊తͳֶशΛͰ͖ΔΑ͏ʹ ʮSampling Layerʯͱ ʮGrouped LayerʯΛఏҊ 2
എܠ ▸ ̏࣍ݩͷधཁ 3 ࣗಈӡస AR ઃܭ
ͷྲྀΕ ▸ എܠ ▸ PointNetʹ͍ͭͯ ▸ ख๏ ▸ ࣮ݧ ▸
·ͱΊ 4
എܠ ▸ ̏࣍ݩͷσʔλ 5 ɹɹ܈ɹɹ ɹɹϝογϡɹɹ Voxel Өɹ RGB-D
എܠ ▸ طଘͷख๏ ▸ ܈Λผͷදݱʹม͍ͯͨ͠ 6 Unstructured, Unordered ͳ܈Λͦͷ··ೖྗ Ͱ͏·͍͘͘Α͏ͳख๏
==> PointNetΛఏҊ@CVPR2017
PointNetͷ͓͞Β͍ ▸ ղ͘λεΫ 7 Classification Segmentation Scene Parsing ೖྗ
PointNetͷ͓͞Β͍ ▸ ઃܭ 8
PointNetͷ͓͞Β͍ ▸ ՝ 9 PointNet֤ʹ͓͍ͯɺlocalͷใ͕ফ͑Δ ֊తಛֶशͰ͖ͳ͍ ෳ֊ͷநԽͰ͖ͳ͍ GlobalͷಛֶशͷΈ ͋Δ͘͠શͯͷ
PointNetͷ͓͞Β͍ ▸ localͷใ͕ফ͑Δͱ 10 globalͷใɺઈର࠲ඪʹґଘͯ͠͠·͏ͷͰɺ segmentationͰະͷͷʹରԠͰ͖ͳ͍
PointNet++Ͱ ▸ ֊తֶश ▸ localͳใΛ͢ 11 ▸ ܈ີʹϩόετʹ
ΞʔΩςΫνϟ 12
֊తͳֶश 13
֊తͳֶश ▸ Sampling layer ▸ Farthest Point Sampling (FPS) 14
https://www.groundai.com/project/parametric-manifold-learning-via-sparse-multidimensional-scaling/
▸ Grouping layer ▸ radius based ball query ֊తͳֶश 15
PointNet layer Convolution layer Input Δԋࢉ ԋࢉͰݟΔ ൣғ Radius ball query ɹ܈ɹ PointNetʢॱ൪ීวʣ ߦྻʢݻఆͷϐΫηϧʣ ΈࠐΈʢॱ൪ґଘʣ ɹີͳߦྻɹ
֊తͳֶश ▸ PointNet layer 16 N1ݸͷʹର͠ C1ݸͷಛ࡞ ॏΈshare
֊తͳֶश ▸ PointNet layer 17 x1,y1,z1,ΫΤϦ1,ಛ1 x2,y2,z2,ΫΤϦ2,ಛ2 x3,y3,z3,ΫΤϦ3,ಛ3 xN1,yN1,zN1,ΫΤϦN1ಛN1 MLP
MLP MLP MLP x1,y1,z1,ಛ1 x2,y2,z2,ಛ2 x3,y3,z3,ಛ3 xN1,yN1,zN1,ಛN1 ॏΈShare
ີґଘࠀख๏ ▸ ̏࣍ݩͷଌఆͰ܈ີ͕Ұൠతͳ՝ 18 ==> ܈ີʹϩόετʹ͍ͨ͠
ີґଘࠀख๏ ▸ SamplingͱGroupingΛෳ༻ҙ 19 MRGͷํ͕࣍ͰपลͱͷಛΛर͑Δ
Classification ࣮ݧ 20
▸ ModelNet40ʹରͯ͠ Classification ࣮ݧ 21 PointNetʹൺɺPointNet++ྨਫ਼্ CNNϕʔεͷख๏ʹউར
ີґଘ࣮ݧ 22 ಛʹ܈͕গͳ͍ͱɺMRG͕༗ޮ
Segmentation ࣮ݧ 23 ૠɿɹIDW (ٯڑՃॏ) Unitpointnet: ֤ͰMLP
Segmentation ࣮ݧ ▸ ݁Ռ 24 MSGΛೖΕΔ͜ͱͰɺෆۉҰͳ܈Ͱ͏·͍͘͘
Segmentation ࣮ݧ ▸ ݁Ռ 25 PointNetΑΓՈ۩ͷsegmentation্͕ख͍͘͘
ඇϢʔΫϦου ڑۭؒͰͷ࣮ݧ 26 WKS , HKS, multi-scale Gaussian curvature
Feature Visualization ▸ ࠷ॳͷͷॏΈΛՄࢹԽ 27 ฏ໘ɺίʔφʔͱ͔Λֶश
·ͱΊ ▸ PointNetΛ֦ுͨ͠ख๏PointNet++Λൃද ▸ CVPR2017=>NIPS2017ʹ̍ຊ௨͍ͯ͠Δɻɻɻ ▸ Sampling layerɺGrouped layerΛऔΓೖΕ֊తͳֶश ▸
MRGɺMSGΛఏҊ͠ɺ܈ີʹґଘ͠ͳֶ͍श ▸ ̏࣍ݩ܈ͷσʔληοτʹରͯ͠ɺSoTAୡ ▸ ݱʹߦͬͨײ ▸ ஶऀͱ͢͜ͱͰࡉ͔ͳใΛर͑Δ 28