Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NIPS2017reading_3Dreconstruction
Search
望月紅葉さんと幸せな家庭を築きたい
January 27, 2018
Research
0
1.5k
NIPS2017reading_3Dreconstruction
望月紅葉さんと幸せな家庭を築きたい
January 27, 2018
Tweet
Share
More Decks by 望月紅葉さんと幸せな家庭を築きたい
See All by 望月紅葉さんと幸せな家庭を築きたい
shadow-detection-with-conditional-generative-adversarial-networks
momijifullmoon
0
150
unsupervised-learning-of-depth-and-ego-motion-from-monocular-video-using-3d-geometric-constraints
momijifullmoon
0
430
ABEJA Innovation Meetup NIPS PointNet++
momijifullmoon
1
490
Other Decks in Research
See All in Research
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
3.8k
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
430
数理最適化に基づく制御
mickey_kubo
6
700
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
840
Self-supervised audiovisual representation learning for remote sensing data
satai
3
240
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
610
Generative Models 2025
takahashihiroshi
22
13k
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
250
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
1.1k
研究テーマのデザインと研究遂行の方法論
hisashiishihara
5
1.5k
IMC の細かすぎる話 2025
smly
2
500
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
230
Featured
See All Featured
Six Lessons from altMBA
skipperchong
28
3.9k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
540
Raft: Consensus for Rubyists
vanstee
140
7k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
What's in a price? How to price your products and services
michaelherold
246
12k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Building Adaptive Systems
keathley
43
2.7k
The Invisible Side of Design
smashingmag
301
51k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Transcript
̏࣍ݩ෮ݩʹؔͯ͠ Learning a Multi-View Stereo Machine NIPS2017จಡΈձˏΫοΫύου 1 ಛʹදه͕ͳ͍ݶΓɺҎԼͷࢿྉ͔ΒҾ༻ https://arxiv.org/pdf/1708.05375.pdf
Learning a Multi-View Stereo Machine ▸ චऀ • Abhishek Kar,
Christian Häne, Jitendra Malik ʢUC Berkeley) ▸ ֓ཁ • Multi View StereoʢMVSʣʹΑΔີͳ3࣍ݩ෮ݩΛDeep LearningͰEnd2Endʹֶश • MVSΛ”ֶशͰ͖Δ”ͷͰແ͍͔ͱ͍͏ٙʹ͑Δ 2
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯά 3.
̏࣍ݩ෮ݩ 4. Τϥʔͷআڈ 3
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯά 3.
̏࣍ݩ෮ݩ 4. Τϥʔͷআڈ ==> DeepԿͰશͯղܾͰ͖ͦ͏ 4
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ɹ← CNNͰ͍͚Δ 2. Ϛονϯά
3. ̏࣍ݩ෮ݩ 4. Τϥʔͷআڈ 5
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯάɹ← CNNͱRNNͰ͍͚Δ
3. ̏࣍ݩ෮ݩ 4. Τϥʔͷআڈ 6
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯά 3.
̏࣍ݩ෮ݩɹ← DeconvͰ͍͚Δ 4. Τϥʔͷআڈ 7
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯά 3.
̏࣍ݩ෮ݩ 4. Τϥʔͷআڈɹ← Encoder-DecoderͰ͍͚Δ 8
DeepԿͰࡾ࣍ݩ෮ݩ ▸ 3DR2N2(ECCV2016) • ෳը૾ΛΤϯίʔυ͠ɺLSTMͰϚονϯά 9 http://3d-r2n2.stanford.edu
DeepԿͰࡾ࣍ݩ෮ݩ ▸ 3D Shape Reconstruction by Modeling 2.5D Sketch (NIPS2017)
• ϦΞϧͷը૾͔Β2.5DͷεέονΛى͜͠ɺ2.5DεέονΛͱʹ 3DshapeਪఆΛEnd2EndֶशͰ͢Δ 10 https://arxiv.org/pdf/1711.03129.pdf
͢༰ ▸ શମ૾ ▸ ख๏ ▸ ࣮ݧ ▸ ·ͱΊ 11
શମ૾ 12 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
શମ૾ 13 Learnt Stereo Machines
ख๏ ▸ Image Encoder • Encoder-DecoderܕʢU-netʣͷઃܭ • Ϛονϯάʹ༻͍Δ̎DͷಛϚοϓ࡞ • ࣍ݩ2DnಛϚο
14
ख๏ ▸ Unplojection ▸ 2࣍ݩͷಛϚοϓ3࣍ݩͷຊདྷ͋Δ͖ಛϚοϓ͔ΒࣹӨ ▸ 3࣍ݩάϦουʹٯࣹӨ 15 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
ख๏ ▸ Unplojection ▸ 2࣍ݩͷಛϚοϓ3࣍ݩͷຊདྷ͋Δ͖ಛϚοϓ͔ΒࣹӨ ▸ 3࣍ݩάϦουʹٯࣹӨ 16 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
ख๏ ▸ Unplohection ▸ 2࣍ݩͷಛϚοϓ3࣍ݩͷຊདྷ͋Δ͖ಛϚοϓ͔ΒࣹӨ ▸ 3࣍ݩάϦουʹٯࣹӨ 17 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
ख๏ ▸ Unplohection ▸ 2࣍ݩͷಛϚοϓ3࣍ݩͷຊདྷ͋Δ͖ಛϚοϓ͔ΒࣹӨ ▸ 3࣍ݩάϦουʹٯࣹӨ 18 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
ख๏ ▸ Recurrent Grid Fusion • 3࣍ݩͷಛϚοϓͷϚονϯάΛGated Recurrent Unit(GRU)Ͱ •
GRUʹ͍࣋ͬͯͨ͘Ίɺ3D convolutionΛ༻ • ͜ͷաఔ͕MVSͷܭࢉϚονϯάΛ୲ • ֶशͷࡍը૾ͷೖྗॱΛϥϯμϜʹೖΕସ͑Δ 19
ख๏ ▸ 3D Grid Reasoning • GRUͰ̏࣍ݩάϦουʹͨ͠ΒϊΠζ͕ଟ͔ͬͨɻ • 3U-netͰEncode Decode͢ΔͱFilteringͰ͖Δ
20
ख๏ ▸ Differentiable Projection • Depthͷ෮ݩʹL1 loss(high frequency informationͷͨΊ) •
Voxelͷ෮ݩʹvoxel͝ͱͷcross entropy loss 21
࣮ݧ ▸ σʔληοτ • ShapeNetσʔλΛར༻ • ̏࣍ݩCADϞσϧͷެ։σʔληοτ 22 https://shapenet.cs.stanford.edu/shrec17/
࣮ݧ • ೖྗը૾ ▸ ShapeNetͷ3DϞσϧΛϨϯμϦϯάͯ͠224x224x3 ▸ ̍ࢹ͋ͨΓ̐ຕ ▸ Χϝϥϙʔζ •
Ξτϓοτ ▸ Depth: 224x224x3 ▸ Voxel: 32x32x32 23
࣮ݧ ▸ ݁Ռ 24 3DR2N2ͱൺɺࡉ͔͍෮ݩ͕Մೳ
࣮ݧ ▸ ݁Ռ 25 3DR2N2ͱൺɺগͳ͍ຕͰ෮ݩ͕Մೳ ຕ૿͑Δͱੑೳ্͕͕Δ
࣮ݧ ▸ ݁Ռ 26 stereo matchingͰ෮ݩ͠ͳ͍ ૭෮ݩՄೳ
࣮ݧ ▸ ݁Ռ 27 stereo matchingʹൺ গͳ͍ຕͰ෮ݩ͕Մೳ චऀᐌ͘ CNNͷίϯςΫετΛݟΔྗ ैདྷͷstereo
matchingΛ͙྇ DepthMapͷਪఆ݁ՌΛෳΈ߹Θͤͯ̏࣍ݩ෮ݩͨ͠
·ͱΊ ▸ Learnt Stereo MachinesΛఏҊ ▸ ෳࢹ͔Βͷೖྗը૾Λݩʹɺ DepthMapͱVoxelͷਪఆ͕Մೳͱͳͬͨ ▸ ՝
• ग़ྗVoxel͕32x32x32ͱখ͍͞ 28