Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
公平性を保証したAI/機械学習 アルゴリズムの最新理論
Search
Kazuto Fukuchi
November 06, 2018
Research
0
19
公平性を保証したAI/機械学習 アルゴリズムの最新理論
第21回情報論的学習理論ワークショップ, 2018.11.4〜7, 札幌(かでる2.7・北大)の企画セッション:学習理論 で発表した講演のスライドです.
Kazuto Fukuchi
November 06, 2018
Tweet
Share
More Decks by Kazuto Fukuchi
See All by Kazuto Fukuchi
Harnessing the Power of Vicinity-Informed Analysis for Classification under Covariate Shift
nanofi
3
380
機械学習アルゴリズムに潜む不公平なバイアスとその理論
nanofi
0
24
公平性を保証したAI/機械学習アルゴリズムの最新理論
nanofi
0
18
Other Decks in Research
See All in Research
FOSS4G 山陰 Meetup 2024@砂丘 はじめの挨拶
wata909
1
140
Weekly AI Agents News! 9月号 論文のアーカイブ
masatoto
1
160
ダイナミックプライシング とその実例
skmr2348
3
520
PostgreSQLにおける分散トレーシングの現在 - 第50回PostgreSQLアンカンファレンス
seinoyu
0
180
20241226_くまもと公共交通新時代シンポジウム
trafficbrain
0
290
The many faces of AI and the role of mathematics
gpeyre
1
1.5k
Optimal and Diffusion Transports in Machine Learning
gpeyre
0
700
ナレッジプロデューサーとしてのミドルマネージャー支援 - MIMIGURI「知識創造室」の事例の考察 -
chiemitaki
0
160
ベイズ的方法に基づく統計的因果推論の基礎
holyshun
0
700
The Fellowship of Trust in AI
tomzimmermann
0
190
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.3k
Geospecific View Generation - Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
satai
2
140
Featured
See All Featured
Optimizing for Happiness
mojombo
376
70k
Side Projects
sachag
452
42k
Designing for humans not robots
tammielis
250
25k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
98
18k
Building Your Own Lightsaber
phodgson
104
6.2k
Unsuck your backbone
ammeep
669
57k
The Pragmatic Product Professional
lauravandoore
32
6.4k
How STYLIGHT went responsive
nonsquared
96
5.3k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Transcript
ެฏੑʹֶྀͨ͠शͱͦͷ ཧత՝ *#*4 اըηογϣϯֶशཧ ɹҰే ཧݚ"*1 LB[VUPGVLVDIJ!SJLFOKQ 1
֓ཁ ػցֶशʹ͓͚Δެฏੑ 'BJSOFTT w ެฏੑ͕͞Ε͍ͯΔ !2 '"5.- ެฏੑͷϫʔΫγϣοϓ JO/*14
*$.- ,%% "$.'"5 ެ ฏ ੑ ͷ ࠃ ࡍ ձ ٞ *OWJUFEUBMLT w*$.- -4XFFOFZ w/*14 ,$SBXGPSE w,%% $%XPSL w,%% +.8JOH
֓ཁ w ຊߨԋͷ༰ w ެฏੑʹ·ͭΘΔٙ w ެฏੑͱʁ w ՝
Կ͕Ͱ͖Δͱخ͍͠ͷ͔ʁ w ಛʹཧతղੳʹ͓͚Δ՝Λத৺ʹհ !3
࣍ w ެฏੑͱ w ެฏੑͷݪҼͱެฏੑఆٛ w ूஂެฏੑ w ूஂެฏੑͷཧత՝
w ݸਓެฏੑ w ݸਓެฏੑͷཧత՝ w ࠷ۙͷల։ͱͦͷཧత՝ !4
ެฏੑ 'BJSOFTT w ػցֶश͕ҙࢥܾఆʹ༻͍ΒΕ͍ͯΔ w ҙࢥܾఆ͕ࠩผΛੜΉՄೳੑ͕͋Δ !5 ࠾༻ ৴༻είΞ ೖࢼ
อݥྉ ݸਓ உੑ ঁੑ
ࠩผతࠂ<4XFFOZ> w lHPPHMFDPNͱSFVUFSTDPNͰਓ໊ͷݕࡧͰදࣔ͞ΕΔࠂΛूܭ w ظ݄݄ؒ w ݸͷࠂΛऩू ΞϑϦΧܥͷ໊લ Ϥʔϩούܥͷ໊લ ωΨςΟϒͳࠂ
தཱతͳࠂ "SSFTUFE -PDBUFE !6
ࠩผతࠂ<4XFFOZ> w ͷࠂ͕lJOTUBOUDIFDLNBUFz ൜ࡑྺݕࡧαΠτ w JOTUBOUDIFDLNBUFͷࠂͷ༰ͱਓछͷಠཱੑΛݕఆ ਓछʹґଘͯ͠ࠂ༰͕ωΨςΟϒʹͳΔ͔ܾ·Δ TJHOJpDBODF Ͱ༏Ґʹैଐ
TJHOJpDBODF Ͱ༏Ґʹैଐ !7
.BDIJOF#JBT<"OHXJO > w $0.1"4ΞϧΰϦζϜ w नਓͷྦྷ൜ʹର͢ΔείΞΛ༩͑ͯ͘ΕΔ w είΞ͕ߴ͍΄Ͳྦྷ൜ϦεΫ͕ߴ͍ !8 ϦεΫ͍͕
ճͷྦྷ൜ ϦεΫߴ͍͕ ྦྷ൜͍ͯ͠ͳ͍
.BDIJOF#JBT<"OHXJO > !9 είΞͷਖ਼֬ੑͱਓछͷؔੑ w ޡͬͯࠇਓͷείΞΛߴ͘ਪఆ w ޡͬͯനਓͷείΞΛ͘ਪఆ നਓ͕༏۰͞ΕͨείΞ͕͞Ε͍ͯΔ ޡͬͯϦεΫ͕͍ͱਪఆ
ޡͬͯϦεΫ͕ߴ͍ͱਪఆ
ػց༁ʹ͓͚Δࠩผ w (PPHMF༁ w ਓশͷੑࠩͷͳ͍τϧίޠ͔Βӳޠͷ༁ w l൴൴ঁ<৬ۀ>Ͱ͋Δɽzͱ͍͏จΛ<৬ۀ>Λม͑ͯ༁ !10 (PPHMF༁IUUQTUSBOTMBUFHPPHMFDPN &㵽BSCBL`TGBDFCPPLQPTU
IUUQTXXXGBDFCPPLDPNQIPUPQIQ GCJETFUB UZQFUIFBUFS
ެฏੑͷࣾձతཁٻ w ػցֶशͷެฏੑࣾձ͔Βͷཁٻڧ͍ w #JH%BUBʹؔ͢Δ8IJUF)PVTF3FQPSU w 8IJUF)PVTF3FQPSU<1PEFTUB > lΞϧΰϦζϜʹΑΔજࡏతͳࠩผΛࢹ͠ͳ͚Ε ͳΒͳ͍z
w ಉ༷ͳ༰͕8IJUF)PVTF3FQPSU<.VOP[ > !11
ެฏੑͷ๏తཁٻ w 5JUMF7** w ਓछɼഽͷ৭ɼफڭɼੑผɼग़ࠃʹΑΔޏ༻ࠩผͷېࢭ w உঁޏ༻ػձۉ๏ w ৬ʹ͓͚Δஉঁࠩผͷېࢭ w
(%13 w "SUJDMFݸਓσʔλॲཧʹؔ͢Δنఆ w lద๏ɺެฏ͔ͭಁ໌ੑͷ͋ΔखஈͰॲཧ͠ͳ͚ΕͳΒͳ͍z !12 ޏ༻ʹػցֶशΛ͏߹ରॲ͕ඞཁෆՄܽ (%13ͲΜͳλεΫͰެฏੑ͕ཁٻ͞ΕΔՄೳੑ͕͋Δ
ෆެฏͷݪҼ ͳͥػցֶश͕ෆެฏͳग़ྗΛ͢Δͷ͔ w σʔλऩू͔Βֶशͷաఔʹ͓͍ͯόΠΞε͕Δ͜ͱ͕ݪҼ w ༷ʑͳόΠΞε͕ͷΔݪҼ͕ٞ͞Ε͍ͯΔ<#BSPDBT > w େ͖ͭ͘ʹΘ͚Δ
!13 ෆެฏ σʔλऩूʹ͓͚Δ όΠΞε w ࠩผతϥϕϧ͚ w αϯϓϦϯάόΠΞε ֶशʹ͓͚Δ όΠΞε w ֶशϞσϧͷઃܭ w গάϧʔϓͷແࢹ σʔλ ֶश
σʔλऩूʹ͓͚ΔόΠΞε w ֶशऀ͕ಘΒΕΔαϯϓϧ͕ෆެฏ !14 ࠩผతͳϥϕϧ wϥϕϧਓͷखʹΑ͚ͬͯΒΕΔ wྫ ޏ༻ͷ࠾൱աڈਓ͕அͨ͠ wϥϕϧ͚ʹࠩผతͳࢥ͍ࠐΈΛө͢ΔՄೳੑ͋Γ wҙࣝతແҙࣝతʹؔΘΒͣ
σʔλऩूʹ͓͚ΔόΠΞε w ֶशऀ͕ಘΒΕΔαϯϓϧ͕ෆެฏ !15 αϯϓϦϯάόΠΞε wภͬͨαϯϓϧ͔͠ಘΒΕͳ͍͕࣌͋Δ wྫ ͓ۚͷିΛͨ͠ਓ͕࠴ෆཤߦʹؕΔ͔Ͳ͏͔Θ͔Βͳ͍ wաڈ͓ۚΛିͨ͠ਓΛࠩผతʹબ͍ͯ͠ΔՄೳੑ͋Γ
"EVMUEBUB<$BMEFST > w 64ͷશ݅ௐࠪσʔλ w ݸਓͷऩೖ͕LҎ্͔ҎԼ͔༧ଌ͢Δ !16 .BMF 'FNBMF )JHIJODPNF
-PXJODPNF ͕ ߴऩೖ ͕ ߴऩೖ σʔλʹஉঁؒͷόΠΞε͕͋Δ
ֶशʹ͓͚ΔόΠΞε w ֶशʹΑͬͯෆެฏͳྨث͕ಘΒΕΔ !17 গάϧʔϓͷແࢹ wσʔλͷஉঁ͕ͻͲ͘ภ͍ͬͯΔͱ͢Δ wྫ ΄ͱΜͲͷσʔλ͕உੑͷͷͰঁੑͷσʔλ͕΄ͱΜͲͳ͍ w༧ଌੑೳΛ্͛ΔͨΊগΛϊΠζͱΈͳ͢Մೳੑ͕͋Δ
"EVMUEBUB<$BMEFST > w /BJWF#BZFTͰֶश͠ྨ͢Δ !18 .BMF 'FNBMF )JHIJODPNF
-PXJODPNF ͕ ߴऩೖ ͕ ߴऩೖ ΑΓࠩผతͳ༧ଌ݁ՌʹͳΔ
ֶशʹ͓͚ΔόΠΞε w ֶशʹΑͬͯෆެฏͳྨث͕ಘΒΕΔ !19 ֶशͷ༧ଌϞσϧͷઃܭʹΑΔࠩผ wػցֶशͰϞσϧઃܭΛͦ͠ͷޙϞσϧͷύϥϝʔλΛσʔλ͔ΒಘΔ wϞσϧઃܭͷํʹΑͬͯࠩผΛট͘ wྫ உঁͷΛͬͯ༧ଌΛߦ͏ϞσϧΛઃܭ wࠩผ
EJTQBSBUFUSFBUNFOU CMJOEOFTT Ϟσϧઃܭ ͳΜͷಛྔΛ͏͔ ༧ଌؔ ઢܗɼଟ߲ࣜɼ3),4ɼ%FFQ//
3FEMJOJOHF⒎FDU<$BMEFST > wஉঁͷΛΘͳͯࠩ͘ผ͕ى͜Δ w உঁਓछͳͲͱڧ͘ґଘͨ͠σʔλ Λ͏͜ͱͰؒతʹࠩผ͕ൃੜ w ྫ ֶྺΛͬͯ࠾൱ΛܾΊΔͱ ੑ͕ࠩੜ·ΕΔՄೳੑ͋Γ
w ྫ ॅॴΛͬͯ࠾൱ΛܾΊΔͱ ਓछͷ͕ࠩੜ·ΕΔՄೳੑ͋Γ !20 'SPNXJLJQFEJB
"EVMUEBUB<$BMEFST > w ੑผΛऔΓআ͍ͯ࠶/BJWF#BZFTͰֶश͠ྨ͢Δ !21 .BMF 'FNBMF )JHIJODPNF
-PXJODPNF ͕ ߴऩೖ ͕ ߴऩೖ ΑΓࠩผతͳ༧ଌ݁ՌʹͳΔ
ෆެฏͷݪҼ w ̎ͭͷঢ়گઃఆ σʔλ ֶशͰόΠΞε͕ͷΔՄೳੑ͕͋Δ ֶशͰόΠΞε͕ͷΔՄೳੑ͕͋Δ !22 ෆެฏ
σʔλऩूʹ͓͚Δ όΠΞε w ࠩผతϥϕϧ͚ w αϯϓϦϯάόΠΞε ֶशʹ͓͚Δ όΠΞε w ֶशϞσϧͷઃܭ w গάϧʔϓͷແࢹ σʔλ ֶश
ެฏੑఆٛ ूஂެฏੑ (SPVQGBJSOFTT w ηϯγςΟϒଐੑʹΑΔάϧʔϓؒͰ ͷࠩҟ !23 ݸਓެฏੑ *OEJWJEVBMGBJSOFTT
w ݸਓؒͰͷࠩҟ ࠾༻ ඇ࠾༻ ࠾༻ ඇ࠾༻ உੑ ঁੑ ࠾༻ ඇ࠾༻ ࠾༻ ඇ࠾༻ ≈ ≈ ⟹ =
ूஂݸਓ σʔλֶश !24 όΠΞε JOσʔλ ֶश όΠΞεJOֶश ूஂެฏੑ
ݸਓެฏੑ
ूஂݸਓ σʔλֶश !25 όΠΞε JOσʔλ ֶश όΠΞεJOֶश ूஂެฏੑ
ݸਓެฏੑ
ઃఆ w ؆୯ͷͨΊʹڭࢣ͋ΓྨͷΈΛߟ͑Δ w ɹɹɹɹɹɹɹɹɹɹֶྺɼ৬ྺɼࢿ֨ͳͲ w ɹɹɹɹɹɹɹɹɹɹੑผɼਓछɼफڭɼ࣏ࢤɼྸͳͲ w ɹɹɹɹɹɹɹɹɹɹ༧ଌ͍ͨ͠ͷ FH
࠾൱ w ɹɹɹɹɹɹɹɹɹɹΞϧΰϦζϜʹΑͬͯ༧ଌ͞Εͨϥϕϧ ೖྗ X ϥϕϧ Y ༧ଌϥϕϧ ̂ Y !26 ผͷೖྗ X S = உੑ S = ঁੑ ೖྗ X ϥϕϧ Y ηϯγςΟϒଐੑ S ༧ଌϥϕϧ ̂ Y ֶश
ूஂݸਓ σʔλֶश !27 όΠΞε JOσʔλ ֶश όΠΞεJOֶश ूஂެฏੑ
ݸਓެฏੑ
%FNPHSBQIJDQBSJUZ w ηϯγςΟϒଐੑͰ͚݅ͮΒΕͨ༧ଌϥϕϧͷ͕Ұக w Ͱͳ͘༧ଌਫ਼ِཅੑِӄੑͷҰகΛࢦ͢ͷ͋Γ !28 %FNPHSBQIJDQBSJUZ ℙ{ ̂ Y
∈ 𝒜|S = s} = ℙ{ ̂ Y ∈ 𝒜|S = s′} ҙͷ𝒜, s, s′ʹ͍ͭͯ ࠾༻ ඇ࠾༻ ࠾༻ ඇ࠾༻ உੑ ঁੑ = ̂ Y|S = உੑ ̂ Y|S = ঁੑ
%FNPHSBQIJDQBSJUZ w σʔλʹόΠΞε͕ͷ͍ͬͯΔՄೳੑ͕͋ΔͨΊ ϥϕϧɹͱ༧ଌϥϕϧɹҟͳΔ͖ w ϥϕϧͱҧ͏༧ଌΛ༩͑Δͱ༧ଌੑೳ͕Լ͕Δ ༧ଌੑೳͱެฏੑͷτϨʔυΦϑͷޮԽ͕త !29 %FNPHSBQIJDQBSJUZ ℙ{
̂ Y ∈ 𝒜|S = s} = ℙ{ ̂ Y ∈ 𝒜|S = s′} ҙͷ𝒜, s, s′ʹ͍ͭͯ Y ̂ Y
ूஂݸਓ σʔλֶश !30 όΠΞε JOσʔλ ֶश όΠΞεJOֶश ूஂެฏੑ
ݸਓެฏੑ
&RVBMJ[FEPEET<)BSEU > w ϥϕϧɹʹΑΔ༧ଌϥϕϧมԽࠩผΛੜ͡ͳ͍ ͱ৴͍ͯ͡Δ w ແཧΓ%1Λอো͠Α͏ͱ͢Δͱٯࠩผ !31 &RVBMJ[FEPEET
ℙ{ ̂ Y ∈ 𝒜|Y = y, S = s} = ℙ{ ̂ Y ∈ 𝒜|Y = y, S = s′} ҙͷ𝒜, y, s, s′ʹ͍ͭͯ Y உੑ உੑ ঁੑ ঁੑ σʔλ ༧ଌ ϥϕϧ %1ͷอূͷͨΊஉੑΛඇ࠾༻ʹ͢Δ ࠾༻͢ΔΑ͏ʹͨ͠ঁੑΑΓ ඇ࠾༻ʹͨ͠உੑͷํ͕ೳྗ͕ߴ͍
&RVBMJ[FEPEET<)BSEU > w ɹͱɹΛҰகͤ͞ΔΑ͏ʹֶशͰ͖Δ w %FNPHSBQIJDQBSJUZͰͰ͖ͳ͍ w ཧతʹτϨʔυΦϑͳ͍ গάϧʔϓແࢹͷࢭ͕తɹ !32
&RVBMJ[FEPEET ℙ{ ̂ Y ∈ 𝒜|Y = y, S = s} = ℙ{ ̂ Y ∈ 𝒜|Y = y, S = s′} ҙͷ𝒜, y, s, s′ʹ͍ͭͯ Y ̂ Y
%1WT&0 %1 w 1SPTόΠΞε͕ͷͬͨσʔλʹରԠ͍ͯ͠Δ w $POTٯࠩผͷ͋Γ &0 w 1SPT %1ʹൺͯ
༧ଌੑೳ͕Α͍ɼٯࠩผى͖ͳ͍ w $POTෆެฏͳόΠΞε͕ͬͨσʔλʹ͑ͳ͍ ͲͪΒಉ࣌ʹୡ͢Δ͜ͱෆՄೳ !33
ूஂެฏੑͷཧత՝ ൚Խతͳެฏੑͷอূ w ֶश࣌ʹςετ࣌ͷެฏੑͷอূ w طଘ݁Ռ w ૬ؔΛجʹͨ͠%1ͷެฏੑࢦඪͷҰ༷ऩଋ<'VLVDIJ > w
Ϋϥεͷେ͖͞ʹґଘ͠ͳ͍&0ͷެฏੑࢦඪͷऩଋ<8PPEXPSUI > w ޙॲཧܕͷΞϧΰϦζϜʹ͓͚Δ%1·ͨ&0ͷ൚Խެฏੑࢦඪόϯυ <"HBSXBM > w Ϋϥεͷେ͖͞ʹґଘ͠ͳ͍%1ͷެฏੑࢦඪͷऩଋ<$PUUFS > !34 ֶशσʔλͷ༧ଌ݁Ռ ςετσʔλͷ༧ଌ݁Ռ ެฏʹͳΔ Α͏ʹֶश ͢Δ ެฏ
ूஂެฏੑͷཧత՝ w ී௨ͷ൚Խόϯυ༧ଌϞσϧͷෳࡶ͞Λ༻͍Δ w ެฏੑͷ൚Խόϯυ༧ଌϞσϧͷෳࡶ͞ʹґଘ͠ͳ͘Ͱ͖Δ <8PPEXPSUI $PUUFS > w
ΘΓʹϥϕϧͷछྨºηϯγςΟϒଐੑͷͷछྨʹґଘ !35 ཧతʹ࠷దੑΛֶͬͨशํ๏ͷൃݟ w ूஂެฏੑʹ͓͚Δ࠷దੑͷղੳ·ͩͳ͍
ूஂެฏੑͷཧత՝ ֶशΞϧΰϦζϜͰ͋Δ࠷దԽͷ࠷దԽΞϧΰϦζϜ w ެฏੑͷ੍Λݴ͑ΕΔͱඇತͳ࠷దԽ͕ݱΕΔ w ۙࣅ ࠷దղΛಘΒΕΔ͜ͱΛอূ͢Δඞཁ͋Γ w طଘݚڀ w
ճؼ ࿈ଓηϯγςΟϒଐੑʹద༻Մೳͳඇತ࠷దԽʹΑͬͯఆࣜԽ͞ΕΔ ΞϧΰϦζϜͷ࠷దอূͷ͍ͭͨ࠷దԽΞϧΰϦζϜ<,PNJZBNB > w ͋ΔछͷΦϥΫϧͷଘࡏͷԾఆͷͱۙࣅ࠷దղΛଟ߲ࣜ࣌ؒͰٻΊΒΕΔ ࠷దԽΞϧΰϦζϜ<"MBCJ > !36
ूஂݸਓ σʔλֶश !37 όΠΞε JOσʔλ ֶश όΠΞεJOֶश ूஂެฏੑ
ݸਓެฏੑ
*OEJWJEVBMGBJSOFTT<%XPSL> w ੑผҎ֎શ͘ಉ͡ਓ͕͍Ε࠾൱ಉ͡ʹ͢Δ͖ w ࣅͨΑ͏ͳਓࣅͨ݁ՌΛड͚औΔ͖ w ֬త༧ଌؔ w !38 -JQTDIJU[QSPQFSUZ
ҙͷx, x′ʹ͍ͭͯ D( f(x), f(x′)) ≤ d(x, x′) ≈ ⟹ f : 𝒳 → Δ(𝒴) ݁Ռͷؒͷ ڑ
ݸਓެฏੑͷཧత՝ ൚Խతͳެฏੑͷอূ w ݸਓެฏੑʹؔͯ͠൚Խతͳੑೳͷղੳ͕ඞཁ w طଘ݁Ռ w σʔλ ֶशʹ͓͚ΔόΠΞεΛআڈ͍ͨ͠ઃఆͷͱ 1"$MFBSOJOHͷΈͰ1"ͳެฏੑͷ੍Լʹ͓͚Δαϯϓϧෳࡶͷղੳ
<3PUICMVN > !39 ࠷దੑΛֶͬͨशํ๏ͷൃݟେ͖ͳ՝
'BJSCBOEJU<+PTFQI > ࠷దੑͷূ໌͕Ͱ͖͍ͯΔ͋Δ w όϯσΟοτʹ͓͍ͯΞʔϜͷબʹެฏੑͷ੍ w σʔλʹόΠΞε͕ೖ͍ͬͯͳ͍ w ֶशʹ͓͚ΔόΠΞεͷআڈ͕త w
ఢରతόϯσΟοτͷઃఆͰ࠷దͳΞϧΰϦζϜΛఏҊ w จ຺͖όϯσΟοτʹ͓͚Δ݁Ռ͋Δ͕࠷దੑͳ͠ !40
࠷ۙͷల։ w طଘͷެฏੑͷఆٛʹٙ w ཧతʹެฏੑఆٛͷਖ਼ԽΛ͍ͨ͠ w طଘͷఆٛͷ w %FNPHSBQIJDQBSJUZٯࠩผ w
&RVBMJ[FEPEETσʔλʹؚ·ΕΔόΠΞεΛऔΓআ͚ͳ͍ w *OEJWJEVBMGBJSOFTTڑവͷఆٛ !41
%FMBZFE&⒎FDU<-JV > w ֶशͱςετͷؒʹ࣌ؒతִͨΓ͕͋Δ w ͦͷؒʹαϯϓϧͷ͕มԽ͢Δ w %FNPHSBQIJDQBSJUZͷਖ਼ੑ ೖࢼ
w ශࠔͷֶੜΛऔΒͳ͍͜ͱͰকདྷශࠔ͕֦େ͢Δ͜ͱͷࢭ w %1 &0ͷ੍Λ͚ͭͨ࣌༧ଌ࣌ͷੑೳͲ͏ͳΔ͔ !42 ࣌ࠁ σʔλऩू ֶश ༧ଌ αϯϓϧͷ͕มԽ
·ͱΊ w ެฏੑʹ͓͚Δཧత՝ w ൚ԽੑೳͷղੳΒΕ࢝Ί͍ͯΔ w ࠷దੑͷূ໌͕େ͖ͳ՝ͱ͍ͯͬͯ͠Δ w ཧతͳެฏੑఆٛͷਖ਼ԽҰ൪େ͖ͳ՝ !43