Upgrade to Pro — share decks privately, control downloads, hide ads and more …

機械学習アルゴリズムに潜む不公平なバイアスとその理論

Avatar for Kazuto Fukuchi Kazuto Fukuchi
September 09, 2022

 機械学習アルゴリズムに潜む不公平なバイアスとその理論

2022年IEICEソサイエティ大会で発表した講演のスライドです.

Avatar for Kazuto Fukuchi

Kazuto Fukuchi

September 09, 2022
Tweet

More Decks by Kazuto Fukuchi

Other Decks in Research

Transcript

  1. ࣗݾ঺հ w ໊લ෱஍Ұే 'VLVDIJ,B[VUP  w ॴଐஜ೾େֶγεςϜ৘ใܥॿڭ w ܦྺ w

    ஜ೾େֶγεςϜ৘ใ޻ֶઐ߈Պത࢜ޙظ՝ఔमྃ w ཧݚ"*1ಛผݚڀһ w ݱࡏஜ೾େֶγεςϜ৘ใܥॿڭ w ݱࡏཧݚ"*1٬һݚڀһ w ݚڀڵຯ w ػցֶशʹ͓͚ΔެฏੑɼϓϥΠόγʔͷཧ࿦໘ w ਺ཧ౷ܭɼಛʹɼ൚ؔ਺ਪఆ
  2. ެฏੑͷ๏తཁٻ w 5JUMF7** w ਓछɼഽͷ৭ɼफڭɼੑผɼग़਎ࠃʹΑΔޏ༻ࠩผͷېࢭ w உঁޏ༻ػձۉ౳๏ w ৬৔ʹ͓͚Δஉঁࠩผͷېࢭ w

    (%13 w "SUJDMFݸਓσʔλॲཧʹؔ͢Δنఆ w lద๏ɺެฏ͔ͭಁ໌ੑͷ͋ΔखஈͰॲཧ͠ͳ͚Ε͹ͳΒͳ͍z 12 ޏ༻ʹػցֶशΛ࢖͏৔߹͸ରॲ͕ඞཁෆՄܽ (%13͸ͲΜͳλεΫͰ΋ެฏੑ͕ཁٻ͞ΕΔՄೳੑ͕͋Δ
  3. ෆެฏͷݪҼ ͳͥػցֶश͕ෆެฏͳग़ྗΛ͢Δͷ͔  w σʔλऩू͔Βֶशͷաఔʹ͓͍ͯόΠΞε͕৐Δ͜ͱ͕ݪҼ w ༷ʑͳόΠΞε͕ͷΔݪҼ͕ٞ࿦͞Ε͍ͯΔ<#BSPDBT > w େ͖ͭ͘ʹΘ͚Δ

    14 ෆެฏ σʔλऩूʹ͓͚Δ 
 όΠΞε w ࠩผతϥϕϧ෇͚ w αϯϓϦϯάόΠΞε ֶशʹ͓͚Δ 
 όΠΞε w ֶशϞσϧͷઃܭ w গ਺άϧʔϓͷແࢹ σʔλ ֶश
  4. "EVMUEBUB<$BMEFST > w 64ͷશ݅ௐࠪσʔλ w ݸਓͷऩೖ͕LҎ্͔ҎԼ͔༧ଌ͢Δ໰୊ 17 .BMF 'FNBMF )JHIJODPNF

      -PXJODPNF   ͕ ߴऩೖ ͕ ߴऩೖ σʔλʹஉঁؒͷόΠΞε͕͋Δ
  5. "EVMUEBUB<$BMEFST > w /BJWF#BZFTͰֶश͠෼ྨ͢Δ 19 .BMF 'FNBMF )JHIJODPNF  

    -PXJODPNF   ͕ ߴऩೖ ͕ ߴऩೖ ΑΓࠩผతͳ༧ଌ݁ՌʹͳΔ
  6. 3FEMJOJOHF ff FDU<$BMEFST > w௚઀உঁͷ஋Λ࢖Θͳͯ͘΋ࠩผ͕ى͜Δ w உঁ΍ਓछͳͲͱڧ͘ґଘͨ͠σʔλ Λ࢖͏͜ͱͰؒ઀తʹࠩผ͕ൃੜ w ྫ

    ֶྺΛ࢖ͬͯ࠾൱ΛܾΊΔͱ 
 ੑ͕ࠩੜ·ΕΔՄೳੑ͋Γ w ྫ ॅॴΛ࢖ͬͯ࠾൱ΛܾΊΔͱ 
 ਓछͷ͕ࠩੜ·ΕΔՄೳੑ͋Γ 21 'SPNXJLJQFEJB
  7. "EVMUEBUB<$BMEFST > w ੑผΛऔΓআ͍ͯ࠶౓/BJWF#BZFTͰֶश͠෼ྨ͢Δ 22 .BMF 'FNBMF )JHIJODPNF  

    -PXJODPNF   ͕ ߴऩೖ ͕ ߴऩೖ ΑΓࠩผతͳ༧ଌ݁ՌʹͳΔ
  8. ઃఆ w ؆୯ͷͨΊʹڭࢣ͋Γ෼ྨ໰୊ͷΈΛߟ͑Δ w ɹɹɹɹɹɹɹɹɹɹֶྺɼ৬ྺɼࢿ֨ͳͲ w ɹɹɹɹɹɹɹɹɹɹੑผɼਓछɼफڭɼ੓࣏ࢤ޲ɼ೥ྸͳͲ w ɹɹɹɹɹɹɹɹɹɹ༧ଌ͍ͨ͠΋ͷ FH

    ࠾൱  w ɹɹɹɹɹɹɹɹɹɹΞϧΰϦζϜʹΑͬͯ༧ଌ͞Εͨϥϕϧ ೖྗ X ϥϕϧ Y ༧ଌϥϕϧ ̂ Y ผͷೖྗ X S = உੑ S = ঁੑ ೖྗ X ϥϕϧ Y ηϯγςΟϒଐੑ S ༧ଌϥϕϧ ̂ Y ֶश
  9. ެฏੑج४ w ༷ʑͳެฏੑج४ w %FNPHSBQIJDQBSJUZ w &RVBMJ[FEPEET<)BSEU > w *OEJWJEVBMGBJSOFTT<%XPSL

    > w $BMJCSBUJPO<1MFJTT > w $PVOUFSGBDUVBMGBJSOFTT<,VTOFS > w 1BUITQFDJ fi DDPVOUFSGBDUVBMGBJSOFTT <$IJBQQB >
  10. %FNPHSBQIJDQBSJUZ w ηϯγςΟϒଐੑͰ৚͚݅ͮΒΕͨ༧ଌϥϕϧͷ෼෍͕Ұ க %FNPHSBQIJDQBSJUZ ℙ{ ̂ Y ∈ 𝒜

    |S = s} = ℙ{ ̂ Y ∈ 𝒜 |S = s′  } ೚ҙͷ 𝒜 , s, s′  ʹ͍ͭͯ ࠾༻ ඇ࠾༻ ࠾༻ ඇ࠾༻ உੑ ঁੑ = ̂ Y|S = உੑ ̂ Y|S = ঁੑ
  11. &RVBMJ[FEPEET<)BSEU > w ِཅੑͷΈͷҰகͷ৔߹&RVBM PQQPSUVOJUZͱݺͿ &RVBMJ[FEPEET ℙ{ ̂ Y ∈

    𝒜 |Y = y, S = s} = ℙ{ ̂ Y ∈ 𝒜 |Y = y, S = s′  } ೚ҙͷ 𝒜 , y, s, s′  ʹ͍ͭͯ ࠾༻ ඇ࠾༻ உੑ ࠾༻ ඇ࠾༻ ঁੑ ਅͷ࠾༻෼෍ ֶश ࠾༻ ඇ࠾༻ ࠾༻ ඇ࠾༻ ެฏ ֶशͷ݁ՌมԽͨ͠෦෼ ྘ͷ෦෼ ͷҰக
  12. *OEJWJEVBMGBJSOFTT<%XPSL > w ੑผҎ֎શ͘ಉ͡ਓ͕͍Ε͹࠾൱΋ಉ͡ʹ͢Δ΂͖ w ࣅͨΑ͏ͳਓ͸ࣅͨ݁ՌΛड͚औΔ΂͖ w ֬཰త༧ଌؔ਺ w -JQTDIJU[QSPQFSUZ

    ೚ҙͷx, x′  ʹ͍ͭͯ D( f(x), f(x′  )) ≤ d(x, x′  ) ≈ ⟹ f : 𝒳 → Δ( 𝒴 ) ݁Ռͷ෼෍ؒͷ ڑ཭
  13. ެฏͳֶशख๏ w1SPYZ"QQSPBDI<,BNJTIJNB  'VLVDIJ  ;BGBS > wඍ෼ෆՄೳ߲Λඍ෼Մೳͳؔ਺Ͱۙࣅ w3FEVDUJPO"QQSPBDI<"HBSXBM 

    $PUUFS  "HBSXBM > wެฏͳֶशͷ࠷దԽ໰୊Λஞ࣍తͳ੍໿ͳ͠࠷దԽʹॻ͖׵͑ Δ w'BJS3FQSFTFOUBUJPO<;BGBS  9JF  .PZFS   ;IBP  $SFBHFS > wηϯγςΟϒଐੑʹґଘ͠ͳ͍ਂ૚දݱΛֶश͠ɼͦͷදݱΛ ࢖ͬͯ༧ଌΛߦ͏
  14. ෼ྨʹ͓͚Δ#BZFTPQUJNBMDMBTTJ fi FS w ෼ྨ໰୊ w ɹɹɹɹɹɹɹɹɹɹɹɹֶྺɼ৬ྺɼࢿ֨ͳͲ w ɹɹɹɹɹɹɹɹɹɹɹɹੑผɼਓछɼफڭɼ੓࣏ࢤ޲ɼ೥ྸͳͲ w

    ɹɹɹɹɹɹɹɹɹɹɹɹ༧ଌ͍ͨ͠΋ͷ FH ࠾൱  w ɹɹɹɹɹɹɹɹɹɹɹɹΞϧΰϦζϜʹΑͬͯ༧ଌ͞Εͨϥϕϧ w ֬཰తͳ༧ଌث  w േଇϕʔεͷެฏͳֶश  w ֶशͷจ຺Ͱ͸໨తؔ਺ɾެฏੑ੍໿Λ௚઀ධՁͰ͖ͳ͍ w ͷ෼෍͕ಘΒΕΔ৔߹ͷ࠷దԽ໰୊ͷղ͸Կ͔ʁ w #BZFTPQUJNBMDMBTTJ fi FS f : ℝd × {0,1} → [0,1] minf 𝔼 [Y(1 − f(X, S)) + (1 − Y)f(X, S)] + λUnfair( f ) (Y, X, S) ೖྗ X ∈ ℝd ϥϕϧ Y ∈ {0,1} ηϯγςΟϒଐੑ S ∈ {0,1} ༧ଌϥϕϧ ̂ Y ∈ {0,1}
  15. ී௨ͷ෼ྨ໰୊ʹ͓͚Δ#BZFTPQUJNBM DMBTTJ fi FS<&MLBO> wެฏੑ੍໿͕ͳ͍৔߹ͷ#BZFTPQUJNBMDMBTTJ fi FS͸ʁ ଛࣦΛ࠷খʹ͢Δ֬཰తͳ#BZFTPQUJNBMDMBTTJ fi FS

    ͸೚ҙͷ ʹ͍ͭͯҎԼͷࣜͰ༩͑ΒΕΔɽ  f* α ∈ [0,1] f*(x) = Hα (η(x) − 1 2 ) ఆཧʢ؆қ൛ʣ<&MLBO> w  w ͸ࢦࣔؔ਺ w Hα (z) = 1{z > 0} + α1{z = 0} 1 η(x) = 𝔼 [Y|X = x]
  16. %FNPHSBQIJDQBSJUZ੍໿ʹ͓͚Δ#BZFT PQUJNBMDMBTTJ fi FS<.FOPO > wެฏੑΛ%FNPHSBQIJDQBSJUZͰଌΔͱ͢Δ w  w 

    Unfair(f ) = ℙ{ ̂ Y = 1|S = 0} − ℙ{ ̂ Y = 1|S = 1} η(x, s) = 𝔼 [Y = 1|X = x, S = s] π = ℙ{S = 0} %FNPHSBQIJDQBSJUZʹର͢Δേଇ෇͖ͷଛࣦΛ࠷খ ʹ͢Δ֬཰తͳ#BZFTPQUJNBMDMBTTJ fi FS ͸೚ҙͷ ʹ͍ͭͯҎԼͷࣜͰ༩͑ΒΕΔɽ  f* α ∈ [0,1] f*(x, s) = Hα (η(x, s) − (−1)s λ 2s(1 − π) + 2(1 − s)π − 1 2 ) ఆཧʢ؆қ൛ʣ<.FOPO >
  17. %FNPHSBQIJDQBSJUZ੍໿ʹ͓͚Δ#BZFT PQUJNBMDMBTTJ fi FS<.FOPO > wެฏੑΛ%FNPHSBQIJDQBSJUZͰଌΔͱ͢Δ w  w 

    Unfair(f ) = ℙ{ ̂ Y = 1|S = 0} − ℙ{ ̂ Y = 1|S = 1} η(x, s) = 𝔼 [Y = 1|X = x, S = s] π = ℙ{S = 0} %FNPHSBQIJDQBSJUZʹର͢Δേଇ෇͖ͷଛࣦΛ࠷খ ʹ͢Δ֬཰తͳ#BZFTPQUJNBMDMBTTJ fi FS ͸೚ҙͷ ʹ͍ͭͯҎԼͷࣜͰ༩͑ΒΕΔɽ  f* α ∈ [0,1] f*(x, s) = Hα (η(x, s) − (−1)s λ 2s(1 − π) + 2(1 − s)π − 1 2 ) ఆཧʢ؆қ൛ʣ<.FOPO > ͰͷΈมΘΔఆ਺ s
  18. &RVBMPQQPSUVOJUZ੍໿ʹ͓͚Δ#BZFT PQUJNBMDMBTTJ fi FS<.FOPO > wެฏੑΛ&RVBMPQQPSUVOJUZͰଌΔͱ͢Δ wUnfair(f ) = ℙ{

    ̂ Y = 1|Y = 1,S = 0} − ℙ{ ̂ Y = 1|Y = 1,S = 1} &RVBMPQQPSUVOJUZʹର͢Δേଇ෇͖ͷଛࣦΛ࠷খʹ ͢Δ֬཰తͳ#BZFTPQUJNBMDMBTTJ fi FS ͸೚ҙͷ ʹ͍ͭͯҎԼͷࣜͰ༩͑ΒΕΔɽ  f* α ∈ [0,1] f*(x, s) = Hα (η(x, s) − 1 2 ) ఆཧʢ؆қ൛ʣ<.FOPO > ੍໿ͳ͠ͱಉ͡ʂ
  19. &RVBMPQQPSUVOJUZ੍໿ʹ͓͚Δܾఆత #BZFTPQUJNBMDMBTTJ fi FS<$I[IFO > w׬શͳ&RVBMPQQPSUVOJUZ੍໿Λߟ͑Δ wേଇͰ͸ͳ͘ ͷ੍໿ͱ͢Δ w 

    w Unfair(f ) = 0 Unfair(f ) = ℙ{ ̂ Y = 1|Y = 1,S = 0} − ℙ{ ̂ Y = 1|Y = 1,S = 1} πs = ℙ{Y = 1,S = s} &RVBMPQQPSUVOJUZʹର͢Δേଇ෇͖ͷଛࣦΛ࠷খʹ ͢Δܾఆతͳ#BZFTPQUJNBMDMBTTJ fi FS ͸೚ҙͷ ʹ͍ͭͯҎԼͷࣜͰ༩͑ΒΕΔɽ  f* α ∈ [0,1] f*(x, s) = 1 {η(x, s)(1 + (−1)s θ πs ) ≥ 1 2 } ఆཧʢ؆қ൛ʣ<$I[IFO > ຖʹᮢ஋Λม͍͑ͯΔ s
  20. ճؼʹ͓͚Δ#BZFTPQUJNBMSFHSFTTPS w ύϥϝτϦοΫճؼϞσϧ  w ͸ฏۉͷϊΠζ w ܾఆతͳ༧ଌث  w

    %FNPHSBQIJDQBSJUZ੍໿ͷެฏͳֶश  Y = f*(X, S) + ξ ξ f : ℝd × [M] → ℝ minf 𝔼 [(Y − f(X, S))2] sub to ∀s ∈ [M], E, ℙ{f(X, S) ∈ E|S = s} = ℙ{f(X, S) ∈ E}
  21. 8BTTFSTUFJOCBSZDFOUFSʹΑΔ 
 #BZFTPQUJNBMFSSPSͷಛ௃͚ͮ<$I[IFO > w %FNPHSBQIJDQBSJUZ੍໿ͷެฏͳֶश͸8BTTFSTUFJO CBSZDFOUFSͰಛ௃͚ͮͰ͖Δ w 8BTTFSTUFJOڑ཭ 

    w ͷ Ͱ৚͚݅ͭͨ෼෍  w W2 (ν0 , ν1 ) = infπ∈Π(ν0 ,ν1 ) ∫ |x − y|2 π(dx, dy) f*(X, S) S = s νf*|s ps = ℙ{S = s} minf:DP 𝔼 [(f*(X, S) − f(X, S))2] = minν ∑ s∈[M] ps W2 2 (νf*|s , ν) ఆཧ<$I[IFO > 8BTTFSTUFJOCBSZDFOUFS
  22. ճؼʹ͓͚Δ#BZFTPQUJNBMSFHSFTTPS <$I[IFO > w %FNPHSBQIJDQBSJUZ੍໿ͷ#BZFTPQUJNBMSFHSFTTPS͸ҎԼͷఆཧͰٻ·Δ w ͸ ͷ Ͱ৚݅෇͚ͨ࣌͠ͷ$%'ͱٖࣅ*$%' Fs

    , F−1 s f*(X, S) S = s g*(x, s) = ∑ s∈[M] ps F−1 s (Fs (f*(x, s))) ఆཧ<$I[IFO > ੨ͱ྘ͷ໘ੵ͸౳͍͠ ੺͸੨ͱ྘ͷฏۉ
  23. ճؼʹ͓͚Δ#BZFTPQUJNBMSFHSFTTPS <$I[IFOBOE4DISFVEFS> w%FNPHSBQIJDQBSJUZͷެฏੑ੍໿Λ؇࿨ͨ࣌͠ͷ#BZFT PQUJNBMSFHSFTTPS w  w U(f ) =

    infν ∑ s∈[M] ps W2 2 (νf|s , ν) U(f ) ≤ αU(f*) g* α (x, s) = (1 − α)g* 0 (x, s) + αf*(x, s) ఆཧ<$I[IFOBOE4DISFVEFS> લϖʔδͷ#BZFTPQUJNBM SFHSFTTPS
  24. Ճ๏తόΠΞεઢܗϞσϧʹ͓͚Δճؼͷ NJOJNBY࠷దੑ<$I[IFOBOE4DISFVEFS> wଛࣦ  wެฏͳΞϧΰϦζϜ೚ҙͷαϯϓϧαΠζ ʹ͍ͭͯ  w ͸ΞϧΰϦζϜ͕ग़ྗ͢Δ༧ଌث w

    ͜ͷ໰୊ʹ͓͚ΔNJOJNBY࠷దͳΞϧΰϦζϜͱ͸ʁ Err( f; P) = 𝔼 P [( f*(X, S) − f(X, S))2] n ℙ{U( ̂ f ) ≤ αU( f*)} ≥ 1 − δ ̂ f w  w ͸ฏۉͷ෼ࢄ ͷਖ਼ن෼෍ʹै͏ w ͸ฏۉ ͷڞ෼ࢄߦྻ ͷଟมྔਖ਼ن෼෍ʹै͏ Y = f*(X, S) + ξ = ⟨β, X⟩ + bS + ξ ξ σξ X μ Σ Ճ๏తόΠΞεઢܗϞσϧ
  25. Ճ๏తόΠΞεઢܗϞσϧʹ͓͚Δճؼͷ NJOJNBY࠷దੑ<$I[IFOBOE4DISFVEFS> wଛࣦ  wެฏͳΞϧΰϦζϜ೚ҙͷαϯϓϧαΠζ ʹ͍ͭͯ  w ͸ΞϧΰϦζϜ͕ग़ྗ͢Δ༧ଌث w

    ͜ͷ໰୊ʹ͓͚ΔNJOJNBY࠷దͳΞϧΰϦζϜͱ͸ʁ Err( f; P) = 𝔼 P [( f*(X, S) − f(X, S))2] n ℙ{U( ̂ f ) ≤ αU( f*)} ≥ 1 − δ ̂ f w  w ͸ฏۉͷ෼ࢄ ͷਖ਼ن෼෍ʹै͏ w ͸ฏۉ ͷڞ෼ࢄߦྻ ͷଟมྔਖ਼ن෼෍ʹै͏ Y = f*(X, S) + ξ = ⟨β, X⟩ + bS + ξ ξ σξ X μ Σ Ճ๏తόΠΞεઢܗϞσϧ ʹґଘ͢Δ߲͸Ճ๏తͳఆ਺ S
  26. ઢܗϞσϧʹ͓͚ΔNJOJNBY࠷దੑ <'VLVDIJ > w EFNPHSBQIJDQBSJUZ੍໿ԼͰͷ#BZFTPQUJNBMSFHSFTTPS w%1੍໿  wଛࣦ  wެฏͳΞϧΰϦζϜ೚ҙͷαϯϓϧαΠζ

    ʹ͍ͭͯ  w͜ͷϞσϧͰͷNJOJNBY࠷దͳΞϧΰϦζϜ͸ʁ f* DP ∀s ∈ [M], E, ℙ{f(X, S) ∈ E|S = s} = ℙ{f(X, S) ∈ E} Err( f; P) = 𝔼 P [( f* DP (X, S) − f(X, S))2] n ℙ{maxs,s′  ∈[M] W2 (ν ̂ f|s , ν ̂ f|s′  ) ≤ Cn−α} ≥ 1 − δ w  w ͸ฏۉͷ෼ࢄ ͷਖ਼ن෼෍ʹै͏ w ͸ฏۉ ͷڞ෼ࢄߦྻ ͷଟมྔਖ਼ن෼෍ʹै͏ Y = f*(X, S) + ξ = ⟨βs , X⟩ + ξ ξ σξ X μS σX I ઢܗϞσϧ
  27. ઢܗϞσϧʹ͓͚ΔNJOJNBY࠷దੑ <'VLVDIJ > w EFNPHSBQIJDQBSJUZ੍໿ԼͰͷ#BZFTPQUJNBMSFHSFTTPS w%1੍໿  wଛࣦ  wެฏͳΞϧΰϦζϜ೚ҙͷαϯϓϧαΠζ

    ʹ͍ͭͯ  w͜ͷϞσϧͰͷNJOJNBY࠷దͳΞϧΰϦζϜ͸ʁ f* DP ∀s ∈ [M], E, ℙ{f(X, S) ∈ E|S = s} = ℙ{f(X, S) ∈ E} Err( f; P) = 𝔼 P [( f* DP (X, S) − f(X, S))2] n ℙ{maxs,s′  ∈[M] W2 (ν ̂ f|s , ν ̂ f|s′  ) ≤ Cn−α} ≥ 1 − δ w  w ͸ฏۉͷ෼ࢄ ͷਖ਼ن෼෍ʹै͏ w ͸ฏۉ ͷڞ෼ࢄߦྻ ͷଟมྔਖ਼ن෼෍ʹै͏ Y = f*(X, S) + ξ = ⟨βs , X⟩ + ξ ξ σξ X μS σX I ઢܗϞσϧ ઢܗύϥϝʔλͱ ͷฏۉ͕ ʹΑΓมΘΔ X S ଛࣦΛެฏͰ࠷దͳ༧ଌثͱͷ 
 ޡࠩͰఆٛʢҰகੑ͕੒Γཱͭʣ ࠷ѱέʔεͷެฏੑΛධՁ ʢ ͸ฏۉతͳެฏੑʣ U
  28. ઢܗϞσϧʹ͓͚ΔNJOJNBY࠷దੑ <'VLVDIJ > w ͱ Λఆ਺ͱݟΕ͹࠷దଛࣦ͸  w ͸ฏۉ ͷ࠷େϊϧϜ

    w ͸Ϟσϧͷύϥϝʔλ਺ʹରԠ͢ΔͨΊطଘͷཧ࿦ͱ΋੔߹͢Δ w ͸ެฏੑಛ༗ʹݱΕΔ߲ w ͸ ʹର͢Δ ͷϊϧϜͷෆҰக౓ͷΑ͏ͳ஋ w࣮࣭తʹ͸ ͷ෼ࢄͷෆҰக౓Λද͢ w࠷దͳΞϧΰϦζϜ͸1MVHJOਪఆྔʹΑͬͯٻ·Δ σX U σξ B2dM n U μs dM B B S βs Y ઢܗϞσϧʹ͓͍ͯNJOJNBY࠷దଛࣦ ͸ҎԼͷΑ͏ʹ཈ ͑ΒΕΔ R* σ2 ξ B2dM n ≲ R* ≲ σ2 X σ2 ξ B2dM ∨ U2σ2 ξ M ∨ U2σX ∨ U2B2 n ఆཧ
  29. ·ͱΊ wެฏੑͷ஫໨ͱࣾձతͳඞཁੑ wݱ࣮ͷΞϓϦέʔγϣϯͰ໰୊ʹͳ͓ͬͯΓɼࣾձతɾ๏తʹඞཁੑ͕ग़͖ͯ ͍ͯΔ wػցֶशʹ͓͚ΔෆެฏͷݪҼ wσʔλऩूʹ͓͚ΔόΠΞεɾֶशʹ͓͚ΔόΠΞε wެฏͳֶशͷ࢓૊Έ wެฏੑج४EFNPHSBQIJDQBSJUZ FRVBMJ[FEPEET ʜ

    wެฏੑͷ੍໿ɾേଇ෇͖ͷଛࣦ࠷খԽ wެฏͳֶशͷ#BZFTPQUJNBMͳ෼ྨɾճؼ wᮢ஋Λม͑ΔΑ͏ͳΠϝʔδͰா৲߹ΘͤΛߦ͏ wެฏͳֶशͷNJOJNBY࠷దͳճؼ wՃ๏తϞσϧͰͷ࠷దੑ<$I[IFOBOE4DISFVEFS>ɼઢܗϞσϧͰͷ࠷ద ੑ<'VLVDIJ >
  30. ࢀߟจݙ w<#VPMBNXJOJ `>#VPMBNXJOJ +PZ BOE5JNOJU(FCSV(FOEFSTIBEFT*OUFSTFDUJPOBM BDDVSBDZEJTQBSJUJFTJODPNNFSDJBMHFOEFSDMBTTJ fi DBUJPO$POGFSFODFPOGBJSOFTT  BDDPVOUBCJMJUZBOEUSBOTQBSFODZ1.-3

     w<%BTUJO`>+F ff SFZ%BTUJO"NB[POTDSBQTTFDSFU"*SFDSVJUJOHUPPMUIBUTIPXFECJBT BHBJOTUXPNFO 63-IUUQTXXXSFVUFSTDPNBSUJDMFVTBNB[PODPNKPCT BVUPNBUJPOJOTJHIUBNB[POTDSBQTTFDSFUBJSFDSVJUJOHUPPMUIBUTIPXFECJBTBHBJOTU XPNFOJE64,$/.,( w<㵽BSCBL`TGBDFCPPLQPTU>&㵽BSCBLVSMIUUQTXXXGBDFCPPLDPNQIPUPQIQ GCJETFUBUZQF UIFBUFS w<"OHXJO `>"OHXJO +VMJB +F ff -BSTPO 4VSZB.BUUV BOE-BVSFO,JSDIOFS   .BDIJOF#JBTVSMIUUQTXXXQSPQVCMJDBPSHBSUJDMFNBDIJOFCJBTSJTLBTTFTTNFOUT JODSJNJOBMTFOUFODJOH w<1PEFTUB >&9&$0''*$&0'5)&13&4*%&/5 #*(%"5"4&*;*/( 0110356/*5*&4 13&4&37*/(7"-6&4 w<.VOP[ >&9&$0''*$&0'5)&13&4*%&/5 #JH%BUB"3FQPSUPO"MHPSJUINJD 4ZTUFNT 0QQPSUVOJUZ BOE$JWJM3JHIUT
  31. ࢀߟจݙ w<#BSPDBT >#BSPDBT 4PMPO BOE"OESFX%4FMCTU#JHEBUBTEJTQBSBUFJNQBDU$BMJG- 3FW   w<$BMEFST >$BMEFST

    5PPOBOE4JDDP7FSXFSl5ISFFOBJWF#BZFTBQQSPBDIFTGPSEJTDSJNJOBUJPO GSFFDMBTTJ fi DBUJPOz*O%BUB.JOJOHBOE,OPXMFEHF%JTDPWFSZ  QQr w<)BSEU >)BSEU .PSJU[ &SJD1SJDF BOE/BUIBO4SFCSP %FD l&RVBMJUZPG0QQPSUVOJUZJO 4VQFSWJTFE-FBSOJOHz*O"EWBODFTJO/FVSBM*OGPSNBUJPO1SPDFTTJOH4ZTUFNT#BSDFMPOB  4QBJO$VSSBO"TTPDJBUFT *OD QQr w<%XPSL >%XPSL $ZOUIJB .PSJU[)BSEU 5POJBOO1JUBTTJ 0NFS3FJOHPME BOE3JDIBSE;FNFM l'BJSOFTTUISPVHIBXBSFOFTTz*O1SPDFFEJOHTPGUIFSE*OOPWBUJPOTJO5IFPSFUJDBM$PNQVUFS 4DJFODF$POGFSFODF&ECZ4IB fi (PMEXBTTFS"$.$BNCSJEHF ." 64""$. QQr  w<1MFJTT >1MFJTT (FP ff .BOJTI3BHIBWBO 'FMJY8V +PO,MFJOCFSH BOE,JMJBO28FJOCFSHFSl0O 'BJSOFTTBOE$BMJCSBUJPOz*O"EWBODFTJO/FVSBM*OGPSNBUJPO1SPDFTTJOH4ZTUFNT"TTPDJBUFT  *OD QQr w<,VTOFS >.BUU+,VTOFS +PTIVB-PGUVT $ISJT3VTTFMM 3JDBSEP4JMWB$PVOUFSGBDUVBMGBJSOFTT "EWBODFTJOOFVSBMJOGPSNBUJPOQSPDFTTJOHTZTUFNT w<$IJBQQB >$IJBQQB 41BUI4QFDJ fi D$PVOUFSGBDUVBM'BJSOFTT1SPDFFEJOHTPGUIF"""* $POGFSFODFPO"SUJ fi DJBM*OUFMMJHFODF   EPJ BBBJWJ
  32. ࢀߟจݙ w<,BNJTIJNB >,BNJTIJNB 5PTIJIJSP 4IPUBSP"LBIP )JEFLJ"TPI BOE+VO4BLVNBl'BJSOFTT"XBSF $MBTTJ fi FSXJUI1SFKVEJDF3FNPWFS3FHVMBSJ[FSz*O.BDIJOF-FBSOJOHBOE,OPXMFEHF%JTDPWFSZJO

    %BUBCBTFT&VSPQFBO$POGFSFODF &$.-1,%% 1BSU**7PM-FDUVSF/PUFTJO$PNQVUFS4DJFODF #SJTUPM 6,4QSJOHFS QQr w<'VLVDIJ >'VLVDIJ ,B[VUP +VO4BLVNB BOE5PTIJIJSP,BNJTIJNBl1SFEJDUJPOXJUI.PEFM#BTFE /FVUSBMJUZz*O.BDIJOF-FBSOJOHBOE,OPXMFEHF%JTDPWFSZJO%BUBCBTFT&VSPQFBO$POGFSFODF &$.- 1,%% 1BSU**7PM-FDUVSF/PUFTJO$PNQVUFS4DJFODF1SBHVF $[FDI3FQVCMJD4QSJOHFS QQr JTCOEPJ\a@^ w<;BGBS >.VIBNNBE#JMBM;BGBS *TBCFM7BMFSB .BOVFM(PNF[3PESJHVF[ BOE,SJTIOB1(VNNBEJ 'BJSOFTTDPOTUSBJOUT" fl FYJCMFBQQSPBDIGPSGBJSDMBTTJ fi DBUJPO5IF+PVSOBMPG.BDIJOF-FBSOJOH 3FTFBSDI w<"HBSXBM >"HBSXBM "MFLI "MJOB#FZHFM[JNFS .JSPTMBW%VEÍL +PIO-BOHGPSE BOE)BOOB8BMMBDIl" 3FEVDUJPOT"QQSPBDIUP'BJS$MBTTJ fi DBUJPOz*OUIFUI*OUFSOBUJPOBM$POGFSFODFPO.BDIJOF-FBSOJOH  QQr w<$PUUFS >"OESFX$PUUFS )FJOSJDI+JBOH ,BSUIJL4SJEIBSBO5XP1MBZFS(BNFTGPS& ffi DJFOU/PO $POWFY$POTUSBJOFE0QUJNJ[BUJPO1SPDFFEJOHTPGUIFUI*OUFSOBUJPOBM$POGFSFODFPO"MHPSJUINJD -FBSOJOH5IFPSZ 1.-3  w<"HBSXBM >"HBSXBM "MFLI .JSPTMBW%VEÍL BOE;IJXFJ4UFWFO8Vl'BJS3FHSFTTJPO2VBOUJUBUJWF %F fi OJUJPOTBOE3FEVDUJPOCBTFE"MHPSJUINTz*OUI*OUFSOBUJPOBM$POGFSFODFPO.BDIJOF-FBSOJOH  *$.-7PM+VOF*OUFSOBUJPOBM.BDIJOF-FBSOJOH4PDJFUZ *.-4 QQr
  33. ࢀߟจݙ w<;BGBS >3JDI;FNFM :V8V ,FWJO4XFSTLZ 5POJ1JUBTTJ $ZOUIJB%XPSL -FBSOJOH'BJS3FQSFTFOUBUJPOT1SPDFFEJOHTPGUIFUI*OUFSOBUJPOBM $POGFSFODFPO.BDIJOF-FBSOJOH 1.-3

       w<9JF >2J[IF9JF ;JIBOH%BJ :VMVO%V &EVBSE)PWZ (SBIBN/FVCJH $POUSPMMBCMF*OWBSJBODFUISPVHI"EWFSTBSJBM'FBUVSF-FBSOJOH"EWBODFTJO /FVSBM*OGPSNBUJPO1SPDFTTJOH4ZTUFNT w<.PZFS >%BOJFM.PZFS 4IVZBOH(BP 3PC#SFLFMNBOT "SBN(BMTUZBO (SFH 7FS4UFFH*OWBSJBOU3FQSFTFOUBUJPOTXJUIPVU"EWFSTBSJBM5SBJOJOH"EWBODFTJO /FVSBM*OGPSNBUJPO1SPDFTTJOH4ZTUFNT w<;IBP >)BO;IBP 3FNJ5BDIFU%FT$PNCFT ,VO;IBOH (FP ff SFZ(PSEPO0O -FBSOJOH*OWBSJBOU3FQSFTFOUBUJPOTGPS%PNBJO"EBQUBUJPO1SPDFFEJOHTPGUIF UI*OUFSOBUJPOBM$POGFSFODFPO.BDIJOF-FBSOJOH 1.-3  w<$SFBHFS >&MMJPU$SFBHFS %BWJE.BESBT +PFSO)FOSJL+BDPCTFO .BSJTTB8FJT  ,FWJO4XFSTLZ 5POJBOO1JUBTTJ 3JDIBSE;FNFM'MFYJCMZ'BJS3FQSFTFOUBUJPO -FBSOJOHCZ%JTFOUBOHMFNFOU1SPDFFEJOHTPGUIFUI*OUFSOBUJPOBM$POGFSFODF PO.BDIJOF-FBSOJOH 1.-3 
  34. ࢀߟจݙ w<&MLBO>$IBSMFT&MLBO5IFGPVOEBUJPOTPGDPTUTFOTJUJWFMFBSOJOH*O*OUFSOBUJPOBM KPJOUDPOGFSFODFPO"SUJGJDJBM*OUFMMJHFODF *+$"* QBHFTr  w<.FOPO >"EJUZB,SJTIOB.FOPO 3PCFSU$8JMMJBNTPO5IFDPTUPGGBJSOFTTJO CJOBSZDMBTTJ

    fi DBUJPO1SPDFFEJOHTPGUIFTU$POGFSFODFPO'BJSOFTT "DDPVOUBCJMJUZ BOE5SBOTQBSFODZ 1.-3  w<$I[IFO >&WHFOJJ$I[IFO $ISJTUPQIF%FOJT .PIBNFE)FCJSJ -VDB0OFUP BOE .BTTJNJMJBOP1POUJM-FWFSBHJOHMBCFMFEBOEVOMBCFMFEEBUBGPSDPOTJTUFOUGBJSCJOBSZ DMBTTJ fi DBUJPO"EWBODFTJO/FVSBM*OGPSNBUJPO1SPDFTTJOH4ZTUFNT w<$I[IFO >&WHFOJJ$I[IFO $ISJTUPQIF%FOJT .PIBNFE)FCJSJ BOE.BTTJNJMJBOP 1POUJM'BJS3FHSFTTJPOXJUI8BTTFSTUFJO#BSZDFOUFST*O"EWBODFTJO/FVSBM *OGPSNBUJPO1SPDFTTJOH4ZTUFNT WPMVNF QBHFTr$VSSBO"TTPDJBUFT  *OD  w<$I[IFOBOE4DISFVEFS>&WHFOJJ$I[IFOBOE/JDPMBT4DISFVEFS"NJOJNBY GSBNFXPSLGPSRVBOUJGZJOHSJTLGBJSOFTTUSBEFP ff JOSFHSFTTJPOEPJ BSYJW w<'VLVDIJ >'VLVDIJ ,B[VUP BOE+VO4BLVNB.JOJNBY0QUJNBM'BJS3FHSFTTJPO VOEFS-JOFBS.PEFMBS9JWQSFQSJOUBS9JW