Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Google CloudのLLM活用の選択肢を広げるVertex AIのパートナーモデル
Search
Nayuta S.
September 12, 2024
Technology
0
540
Google CloudのLLM活用の選択肢を広げるVertex AIのパートナーモデル
クラメソおおさか IT 勉強会 Midosuji Tech #2で発表した内容となります。
-
https://classmethod.connpass.com/event/328623/
Nayuta S.
September 12, 2024
Tweet
Share
More Decks by Nayuta S.
See All by Nayuta S.
Snowflakeの生成AI機能を活用したデータ分析アプリの作成 〜Cortex AnalystとCortex Searchの活用とStreamlitアプリでの利用〜
nayuts
1
940
FastMCPでSQLをチェックしてくれるMCPサーバーを自作してCursorから動かしてみた
nayuts
1
500
Amazon Athenaから利用時のGlueのIcebergテーブルのメンテナンスについて
nayuts
0
480
目玉アップデート!のSageMaker LakehouseとUnified Studioは何たるかを見てみよう!
nayuts
0
1.1k
Amazon Rekognitionのカスタムモデルで独自のモデレーションモデルをトレーニングする
nayuts
0
300
データ品質管理の第一歩
nayuts
1
1.1k
簡単に始めるSnowflakeの機械学習
nayuts
1
1.7k
AthenaとStep Functionsで簡単ETLオーケストレーション #midosuji_tech
nayuts
1
1.3k
Vertex AIとBigQueryでつくる簡単ベクトル検索&テキスト分析システム
nayuts
0
1.3k
Other Decks in Technology
See All in Technology
あなたの知らない Linuxカーネル脆弱性の世界
recruitengineers
PRO
3
160
Building a cloud native business on open source
lizrice
0
180
ViteとTypeScriptのProject Referencesで 大規模モノレポのUIカタログのリリースサイクルを高速化する
shuta13
3
210
What's new in OpenShift 4.20
redhatlivestreaming
0
270
AI時代におけるデータの重要性 ~データマネジメントの第一歩~
ryoichi_ota
0
720
オブザーバビリティと育てた ID管理・認証認可基盤の歩み / The Journey of an ID Management, Authentication, and Authorization Platform Nurtured with Observability
kaminashi
1
720
From Natural Language to K8s Operations: The MCP Architecture and Practice of kubectl-ai
appleboy
0
230
もう外には出ない。より快適なフルリモート環境を目指して
mottyzzz
13
11k
パフォーマンスチューニングのために普段からできること/Performance Tuning: Daily Practices
fujiwara3
2
130
AIプロダクトのプロンプト実践テクニック / Practical Techniques for AI Product Prompts
saka2jp
0
110
[re:Inent2025事前勉強会(有志で開催)] re:Inventで見つけた人生をちょっと変えるコツ
sh_fk2
0
110
マルチエージェントのチームビルディング_2025-10-25
shinoyamada
0
180
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
Thoughts on Productivity
jonyablonski
70
4.9k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
The Language of Interfaces
destraynor
162
25k
Become a Pro
speakerdeck
PRO
29
5.6k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
How to Think Like a Performance Engineer
csswizardry
27
2.1k
Transcript
Google CloudのLLM活用の選択肢を広げる Vertex AIのパートナーモデル 2024/9/11(水) Midosuji.Tech #2 クラスメソッド株式会社 鈴木那由太 1
名前:鈴木 那由太(スズキ ナユタ) 所属:クラスメソッド株式会社 データ事業本部 インテグレーション部 機械学習チーム 現在の業務: 機械学習用途のデータ分析基盤構築 機械学習システム構築
X:@nayuyu_ns 2 自己紹介 Osaka
3 今日の内容 人気のLLMがAPI(パートナーモデル)としてGoogle CloudのVertex AIで 提供されているので、ご紹介します! <うれしいこと> • GoogleのGemini以外の人気モデルである、Anthropic ClaudeやMistral
AIなどが 利用できる • Vertex AIのAPIとして利用できる • LLMをホストするインスタンスの用意が不要、入出力トークンの従量課金で利用できる • BigQuery MLからの利用も可能(現時点では一部モデル) Vertex AI
4 Vertex AIについて • Google Cloudで生成AIを構築・使用するためのフルマネージド統合AI開発プラットフォーム • 従来の機械学習モデル開発 + 生成AI開発
• Googleが開発したLLMであるGeminiに加え、Googleパートナーのモデルが利用できる • LLMはインスタンスを手軽にデプロイできるタイプと、マネージドAPIとして 提供されているタイプ(パートナーモデル)がある
5 パートナーモデルについて • Google パートナーが開発した厳選されたモデルで、MaaS(model as a service)のマネージドAPI として提供されている。 •
現在提供されているモデルは以下 • AI21 Labs(プレビュー) • Anthropic Claude • Llama(プレビュー) • Mistral AI • いろんなモデルを使ってよりタスクに適したものを選択したいが、多くの場合で自前で 大きなインスタンスを用意しホストする必要があったり、新たにAPIの契約を結んだりして、 費用面などでネックがあった。
6 パートナーモデルの利用イメージ • APIにプロンプトを入力することで回答してくれる request.json リクエスト例 レスポンス例
7 パートナーモデルの有効化 • Model Gardenよりパートナーモデルのモデルカードを探し、有効化する • モデルカードにはcurlやPythonなどさまざまな利用方法やユースケースが記載されている
8 BigQuery MLからの利用 <利用するための手順> 1.Anthropic Claudeの使用したいモデルのマネージドAPIを有効化する。 2.BigQueryで外部接続を作成する。 3.BigQueryでリモートモデルを作成する。 4.BigQueryでML.GENERATE_TEXT関数を使い、マネージドAPIにリクエストを送る。 •
パートナーモデルのうちAnthropic ClaudeはプレビューでBigQueryから利用できるように リモートモデル作成例
9 ユースケース • BigQueryに格納したデータのLLMによる分析 • ML.GENERATE_TEXT関数で直接Vertex AIにリクエストする • ML.GENERATE_TEXT関数で対応していないものはリモート関数を 使うことで利用できる
BigQuery Cloud Functions Vertex AI • AI21 Labs(プレビュー) • Llama(プレビュー) • Mistral AI • Gemini • Anthropic Claude ML.GENERATE_TEXT リモート関数 いずれの場合も、LLMは インスタンスの料金・管理 なく利用できる点がポイント ※BigQuery LMとの統合はプレビュー
10 まとめ • Vertex AIで提供されるMaaSであるパートナーモデルについてご紹介した。 • マネージドで、インスタンスの管理・費用なく、入出力のトークンでの従量課金で利用できる。 • Anthropic ClaudeやMistral
AIなど人気のモデルをサポートしている。 • プレビューではあるが、Anthropic ClaudeはBigQuery MLのML.GENERATE_TEXT関数でも サポートされるようになり、ますますLLM利用の選択肢が広がってきている。
11