Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
Search
Nealle
August 19, 2025
Programming
1
2.5k
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
2025/8/20
https://pug.connpass.com/event/364357/
#p_UG 東京:夏のデータ活用大共有会 データ活用の第一歩からAIにやさしいデータ基盤までお届け!
Nealle
August 19, 2025
Tweet
Share
More Decks by Nealle
See All by Nealle
AI巻き込み型コードレビューのススメ
nealle
1
150
Startup Tech Night ニーリーのAI活用
nealle
0
76
モビリティSaaSにおけるデータ利活用の発展
nealle
1
920
Pythonに漸進的に型をつける
nealle
1
210
品質ワークショップをやってみた
nealle
0
1.4k
DevHRに全部賭けろ
nealle
0
240
AI OCR API on Lambdaを Datadogで可視化してみた
nealle
0
400
生成AI、実際どう? - ニーリーの場合
nealle
0
1.1k
“いい感じ“な定量評価を求めて - Four Keysとアウトカムの間の探求 -
nealle
4
18k
Other Decks in Programming
See All in Programming
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
680
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
160
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
2026年 エンジニアリング自己学習法
yumechi
0
130
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.5k
コントリビューターによるDenoのすゝめ / Deno Recommendations by a Contributor
petamoriken
0
200
Oxlintはいいぞ
yug1224
5
1.3k
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
FOSDEM 2026: STUNMESH-go: Building P2P WireGuard Mesh Without Self-Hosted Infrastructure
tjjh89017
0
160
AtCoder Conference 2025
shindannin
0
1k
AI & Enginnering
codelynx
0
110
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
400
Featured
See All Featured
Statistics for Hackers
jakevdp
799
230k
A Tale of Four Properties
chriscoyier
162
24k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
WENDY [Excerpt]
tessaabrams
9
36k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
250
What's in a price? How to price your products and services
michaelherold
247
13k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Unsuck your backbone
ammeep
671
58k
Building the Perfect Custom Keyboard
takai
2
680
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
320
From π to Pie charts
rasagy
0
120
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
110
Transcript
TROCCO×dbtで実現する 人にもAIにもやさしいデータ基盤 2025.08.20 #p_UG 東京:夏のデータ活用大共有会 株式会社ニーリー 上田 健太郎 NEALLE 1
2022年8月にニーリーに入社。 Analyticsチームの1人目のメンバーとなり、 「事業や経営の意思決定を支援するデータ分析結果の創出」をミッションに、 データ基盤構築から分析まで幅広く対応。 2 自己紹介 株式会社ニーリー Analyticsチーム エンジニア 上田
健太郎
3 プロダクト紹介
4 今日のお話 • 分析の属人化防止 (イネーブリング) のために、TROCCO×dbtでデータマートを整備した • 結果、属人化防止だけでなく、AI活用にも繋がった = 人にもAIにもやさしいデータ基盤
• 同時に、人 (Analytics Eng.) が注力すべきポイントも見えてきた
5 なぜTROCCO? : 2023年10月頃 • より事業貢献に近い領域 (データマート整備や分析) に注力したかった • データソース毎にETLを自前実装するのはマンパワー的にも困難
◦ チーム発足当初は1名体制 (現在は5名) • テーブルやカラムの追加削除も多く、独自実装での検知・追従は非現実的
6 なぜTROCCO? : 2023年10月頃 • より事業貢献に近い領域 (データマート整備や分析) に注力したかった • データソース毎にETLを自前実装するのはマンパワー的にも困難
◦ チーム発足当初は1名体制 (現在は5名) • テーブルやカラムの追加削除も多く、独自実装での検知・追従は非現実的 ※ BQに直接転送しているデータソースは省略 (GAなど)
▼導入効果 • テーブル・カラム自動追従や豊富なコネクタにより ETLが楽になり、マート整備・分析に注力できた • サポートが充実しているのも大変ありがたかった 7 なぜTROCCO? : 2023年10月頃
• より事業貢献に近い領域 (データマート整備や分析) に注力したかった • データソース毎にETLを自前実装するのはマンパワー的にも困難 ◦ チーム発足当初は1名体制 (現在は5名) • テーブルやカラムの追加削除も多く、独自実装での検知・追従は非現実的 ※ BQに直接転送しているデータソースは省略 (GAなど)
8 なぜdbt?: 2025年3月頃 • 2024年の中盤からデータ分析の依頼が増加し続け、データ活用のイネーブリングが急務に。 同時に分析用に加工済みのデータマートの重要性が増した • dbtはデータマート定義はもちろん、データカタログの出力も可能 • TROCCOはdbt連携
(実行) が可能なので、渡りに船だった
9 なぜdbt?: 2025年3月頃 • 2024年の中盤からデータ分析の依頼が増加し続け、データ活用のイネーブリングが急務に。 同時に分析用に加工済みのデータマートの重要性が増した • dbtはデータマート定義はもちろん、データカタログの出力も可能 • TROCCOはdbt連携
(実行) が可能なので、渡りに船だった
▼導入効果 • メンテフリーのdbt実行環境が手に入った • マート&カタログにより分析クエリ作成に必要な知識が 大幅に低減。Bizメンバーの分析参画が増加 • dbt testなどの諸機能によりデータの信頼性・整備性が向上 10
なぜdbt?: 2025年3月頃 • 2024年の中盤からデータ分析の依頼が増加し続け、データ活用のイネーブリングが急務に。 同時に分析用に加工済みのデータマートの重要性が増した • dbtはデータマート定義はもちろん、データカタログの出力も可能 • TROCCOはdbt連携 (実行) が可能なので、渡りに船だった
11 なぜAI?: 2025年7月頃 • 元々、属人化防止のために分析SQLには丁寧にコメントをつけていた ◦ 作成経緯、1行の粒度、CTE単位の処理説明、編集履歴など • マート&カタログだけでは一部のbizメンバーの分析イネーブリングに留まっていた •
手元の生成AIにSQLとdbtモデルを読ませると、結構な精度でSQLを作成できることが判明 • そんな中、社内にAI担当チームも発足。「AI Analytics Chatbot」を作ることに
12 なぜAI?: 2025年7月頃 • 元々、属人化防止のために分析SQLには丁寧にコメントをつけていた ◦ 作成経緯、1行の粒度、CTE単位の処理説明、編集履歴など • マート&カタログだけでは一部のbizメンバーの分析イネーブリングに留まっていた •
手元の生成AIにSQLとdbtモデルを読ませると、結構な精度でSQLを作成できることが判明 • そんな中、社内にAI担当チームも発足。「AI Analytics Chatbot」を作ることに
13 なぜAI?: 2025年7月頃 • 元々、属人化防止のために分析SQLには丁寧にコメントをつけていた ◦ 作成経緯、1行の粒度、CTE単位の処理説明、編集履歴など • マート&カタログだけでは一部のbizメンバーの分析イネーブリングに留まっていた •
手元の生成AIにSQLとdbtモデルを読ませると、結構な精度でSQLを作成できることが判明 • そんな中、社内にAI担当チームも発足。「AI Analytics Chatbot」を作ることに ▼導入効果 • AnalyticsチームのSQL開発は圧倒的に効率化 • SQLコメントとdbt定義のマート群はAIにも 解釈しやすかったようで、初版で使える精度を実現 • Bizメンバーへの効果は計測中 (公開後間もないため)
14 見えてきたポイント: 人にもAIにも優しい基盤を実現するには? No. ポイント アクション 効果 1 徹底的なドキュメンテーション ・dbtモデルでのdescription記載の強制
・分析用SQLへのコメント記載の徹底 ・分析の属人化防止 (イネーブリング) ・AI回答精度の向上 2 分析用データマートの充実化 ・複雑なjoinやcase式、Biz指標の定義を隠蔽 3 利用者とのコミュニケーション ・定期的な分析・マート需要のヒアリング ・実用性の高い データマートの企画 4 マネージドな仕組みの活用 ・TROCCO×dbt でETL・データ検証に 要する時間を削減 ・上記対応の時間の捻出 1~4は同時に、人 (Analytics Eng.) が注力すべきポイント = AIに代替されにくいポイント でもあると思う
ニーリーではプロダクトエンジニア、 その他のポジションも積極採用中です! https://jobs.nealle.com/ We are hiring!!!