Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
2k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
840
Intro to Spark Streaming
newcircle
1
2k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
670
Java 8 Lambda Expressions & Streams
newcircle
0
620
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.9k
Dave Smith- Mastering the Android Touch System
newcircle
9
17k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
220
なぜ令和の今ゲームボーイを触るのか
kimkim0106
0
110
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
190
私たち準委任PdEは2つのプロダクトに挑戦する ~ソフトウェア、開発支援という”二重”のプロダクトエンジニアリングの実践~ / 20260212 Naoki Takahashi
shift_evolve
PRO
2
310
プレビュー版のDevOpsエージェントを現段階で触ってみた
ad_motsu
1
160
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.5k
ECS障害を例に学ぶ、インシデント対応に備えたAIエージェントの育て方 / How to develop AI agents for incident response with ECS outage
iselegant
5
740
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
170
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
320
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
140
Cloud Runでコロプラが挑む 生成AI×ゲーム『神魔狩りのツクヨミ』の裏側
colopl
0
260
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
810
Featured
See All Featured
Are puppies a ranking factor?
jonoalderson
1
3k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
330
From π to Pie charts
rasagy
0
130
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
360
Typedesign – Prime Four
hannesfritz
42
3k
Balancing Empowerment & Direction
lara
5
910
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
170
Done Done
chrislema
186
16k
The Curse of the Amulet
leimatthew05
1
8.9k
Navigating Weather and Climate Data
rabernat
0
120
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
88
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11