Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
820
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
640
Java 8 Lambda Expressions & Streams
newcircle
0
610
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
AIエージェント入門 〜基礎からMCP・A2Aまで〜
shukob
0
110
ビズリーチ求職者検索におけるPLMとLLMの活用 / Search Engineering MEET UP_2-1
visional_engineering_and_design
1
170
難しいセキュリティ用語をわかりやすくしてみた
yuta3110
0
330
『バイトル』CTOが語る! AIネイティブ世代と切り拓くモノづくり組織
dip_tech
PRO
1
130
「使い方教えて」「事例教えて」じゃもう遅い! Microsoft 365 Copilot を触り倒そう!
taichinakamura
0
450
[VPoE Global Summit] サービスレベル目標による信頼性への投資最適化
satos
0
130
生成AI時代のセキュアコーディングとDevSecOps
yuriemori
0
130
サイバーエージェント流クラウドコスト削減施策「みんなで金塊堀太郎」
kurochan
4
2.1k
技育祭2025【秋】 企業ピッチ/登壇資料(高橋 悟生)
hacobu
PRO
0
120
それでも私が品質保証プロセスを作り続ける理由 #テストラジオ / Why I still continue to create QA process
pineapplecandy
0
140
フレームワークを意識させないワークショップづくり
keigosuda
0
210
Implementing and Evaluating a High-Level Language with WasmGC and the Wasm Component Model: Scala’s Case
tanishiking
0
150
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
GitHub's CSS Performance
jonrohan
1032
470k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
For a Future-Friendly Web
brad_frost
180
10k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
600
Context Engineering - Making Every Token Count
addyosmani
7
270
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
The Pragmatic Product Professional
lauravandoore
36
6.9k
The World Runs on Bad Software
bkeepers
PRO
72
11k
Embracing the Ebb and Flow
colly
88
4.9k
The Language of Interfaces
destraynor
162
25k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11