Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
800
Intro to Spark Streaming
newcircle
1
1.8k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
630
Java 8 Lambda Expressions & Streams
newcircle
0
590
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
表現を育てる
kiyou77
1
210
Cloud Spanner 導入で実現した快適な開発と運用について
colopl
1
680
Developers Summit 2025 浅野卓也(13-B-7 LegalOn Technologies)
legalontechnologies
PRO
0
720
PHPカンファレンス名古屋-テックリードの経験から学んだ設計の教訓
hayatokudou
2
310
ビジネスモデリング道場 目的と背景
masuda220
PRO
9
520
速くて安いWebサイトを作る
nishiharatsubasa
10
13k
(機械学習システムでも) SLO から始める信頼性構築 - ゆる SRE#9 2025/02/21
daigo0927
0
120
急成長する企業で作った、エンジニアが輝ける制度/ 20250214 Rinto Ikenoue
shift_evolve
3
1.3k
Swiftの “private” を テストする / Testing Swift "private"
yutailang0119
0
130
RSNA2024振り返り
nanachi
0
580
プロダクトエンジニア構想を立ち上げ、プロダクト志向な組織への成長を続けている話 / grow into a product-oriented organization
hiro_torii
1
200
2.5Dモデルのすべて
yu4u
2
860
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Mobile First: as difficult as doing things right
swwweet
223
9.3k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Designing Experiences People Love
moore
140
23k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
What's in a price? How to price your products and services
michaelherold
244
12k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.8k
A Tale of Four Properties
chriscoyier
158
23k
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11