Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
NewCircle Training
September 19, 2013
Technology
1
2k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
840
Intro to Spark Streaming
newcircle
1
2k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
660
Java 8 Lambda Expressions & Streams
newcircle
0
620
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.9k
Dave Smith- Mastering the Android Touch System
newcircle
9
17k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
The Engineer with a Three-Year Cycle - 2
e99h2121
0
190
漸進的過負荷の原則
sansantech
PRO
3
390
ReproでのicebergのStreaming Writeの検証と実運用にむけた取り組み
joker1007
0
490
人はいかにして 確率的な挙動を 受け入れていくのか
vaaaaanquish
4
2.7k
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
41k
Amazon Bedrock AgentCore 認証・認可入門
hironobuiga
1
160
AI アクセラレータチップ AWS Trainium/Inferentia に 今こそ入門
yoshimi0227
1
330
JuliaTokaiとしてはこれが最後かもしれない(仮) for NGK2026S
antimon2
0
120
持続可能な開発のためのミニマリズム
sansantech
PRO
4
580
Git Training GitHub
yuhattor
1
270
AI時代にあわせたQA組織戦略
masamiyajiri
6
2.7k
SMTP完全に理解した ✉️
yamatai1212
0
110
Featured
See All Featured
Leo the Paperboy
mayatellez
4
1.3k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
900
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
The agentic SEO stack - context over prompts
schlessera
0
600
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
260
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
95
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Docker and Python
trallard
47
3.7k
Darren the Foodie - Storyboard
khoart
PRO
2
2.3k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11