Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
800
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
630
Java 8 Lambda Expressions & Streams
newcircle
0
590
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
大規模サービスにおける カスケード障害
takumiogawa
1
180
バクラクでのSystem Risk Records導入による変化と改善の取り組み/Changes and Improvement Initiatives Resulting from the Implementation of System Risk Records
taddy_919
0
220
Proxmox VE超入門 〜 無料で作れるご自宅仮想化プラットフォームブックマークする
devops_vtj
0
120
20250328_OpenAI製DeepResearchは既に一種のAGIだと思う話
doradora09
PRO
0
150
Dapr For Java Developers SouJava 25
salaboy
1
130
LINE Notify互換のボットを作った話
kenichirokimura
0
180
モノリスの認知負荷に立ち向かう、コードの所有者という思想と現実
kzkmaeda
0
110
Compose MultiplatformにおけるiOSネイティブ実装のベストプラクティス
enomotok
1
210
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
300
ペアーズにおけるData Catalog導入の取り組み
hisamouna
0
110
Restarting_SRE_Road_to_SRENext_.pdf
_awache
0
160
問題解決に役立つ数理工学
recruitengineers
PRO
7
2.2k
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.6k
We Have a Design System, Now What?
morganepeng
51
7.5k
Designing for Performance
lara
606
69k
Gamification - CAS2011
davidbonilla
81
5.2k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
16
1.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
51
2.4k
4 Signs Your Business is Dying
shpigford
183
22k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Building Applications with DynamoDB
mza
94
6.3k
Git: the NoSQL Database
bkeepers
PRO
429
65k
Mobile First: as difficult as doing things right
swwweet
223
9.5k
How to Think Like a Performance Engineer
csswizardry
22
1.5k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11