Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
800
Intro to Spark Streaming
newcircle
1
1.8k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
630
Java 8 Lambda Expressions & Streams
newcircle
0
580
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.7k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
技術に触れたり、顔を出そう
maruto
1
160
WantedlyでのKotlin Multiplatformの導入と課題 / Kotlin Multiplatform Implementation and Challenges at Wantedly
kubode
0
250
AWS re:Invent 2024 re:Cap Taipei (for Developer): New Launches that facilitate Developer Workflow and Continuous Innovation
dwchiang
0
170
【NGK2025S】動物園(PINTO_model_zoo)に遊びに行こう
kazuhitotakahashi
0
240
GoogleのAIエージェント論 Authors: Julia Wiesinger, Patrick Marlow and Vladimir Vuskovic
customercloud
PRO
0
160
メールヘッダーを見てみよう
hinono
0
110
データ基盤におけるIaCの重要性とその運用
mtpooh
4
530
When Windows Meets Kubernetes…
pichuang
0
310
Oracle Exadata Database Service(Dedicated Infrastructure):サービス概要のご紹介
oracle4engineer
PRO
0
12k
2024年活動報告会(人材育成推進WG・ビジネスサブWG) / 20250114-OIDF-J-EduWG-BizSWG
oidfj
0
230
2025年のARグラスの潮流
kotauchisunsun
0
800
新卒1年目、はじめてのアプリケーションサーバー【IBM WebSphere Liberty】
ktgrryt
0
130
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Code Reviewing Like a Champion
maltzj
521
39k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
A Philosophy of Restraint
colly
203
16k
Designing Experiences People Love
moore
139
23k
Scaling GitHub
holman
459
140k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Documentation Writing (for coders)
carmenintech
67
4.5k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11