Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
2k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
830
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
650
Java 8 Lambda Expressions & Streams
newcircle
0
610
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
コンピューティングリソース何を使えばいいの?
tomokusaba
1
160
AIエージェントによるエンタープライズ向けスライド検索!
shibuiwilliam
1
270
やり方は一つだけじゃない、正解だけを目指さず寄り道やその先まで自分流に楽しむ趣味プログラミングの探求 2025-11-15 YAPC::Fukuoka
sugyan
1
680
隙間ツール開発のすすめ / PHP Conference Fukuoka 2025
meihei3
0
440
内部品質・フロー効率・コミュニケーションコストを悪化させ現場を苦しめかねない16の組織設計アンチパターン[超簡易版] / 16 Organization Design Anti-Patterns for Software Development
mtx2s
2
260
ソフトウェア開発現代史: 55%が変化に備えていない現実 ─ AI支援型開発時代のReboot Japan #agilejapan
takabow
4
3.2k
エンジニアにとってコードと並んで重要な「データ」のお話 - データが動くとコードが見える:関数型=データフロー入門
ismk
0
510
QAセントラル組織が運営する自動テストプラットフォームの課題と現状
lycorptech_jp
PRO
0
390
Lazy Constant - finalフィールドの遅延初期化
skrb
0
190
Pythonで構築する全国市町村ナレッジグラフ: GraphRAGを用いた意味的地域検索への応用
negi111111
8
3.5k
AIと自動化がもたらす業務効率化の実例: 反社チェック等の調査・業務プロセス自動化
enpipi
0
420
旧から新へ: 大規模ウェブクローラの Perl から Go への移行 / YAPC::Fukuoka 2025
motemen
3
860
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.1k
Six Lessons from altMBA
skipperchong
29
4.1k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
660
Side Projects
sachag
455
43k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
The Pragmatic Product Professional
lauravandoore
36
7k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11