Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
790
Intro to Spark Streaming
newcircle
1
1.8k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
630
Java 8 Lambda Expressions & Streams
newcircle
0
580
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.7k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
UI State設計とテスト方針
rmakiyama
2
650
ゼロから創る横断SREチーム 挑戦と進化の軌跡
rvirus0817
2
270
Wantedly での Datadog 活用事例
bgpat
1
530
AWS re:Invent 2024で発表された コードを書く開発者向け機能について
maruto
0
200
事業貢献を考えるための技術改善の目標設計と改善実績 / Targeted design of technical improvements to consider business contribution and improvement performance
oomatomo
0
100
ずっと昔に Star をつけたはずの思い出せない GitHub リポジトリを見つけたい!
rokuosan
0
150
LINEスキマニにおけるフロントエンド開発
lycorptech_jp
PRO
0
330
ガバメントクラウドのセキュリティ対策事例について
fujisawaryohei
0
560
複雑性の高いオブジェクト編集に向き合う: プラガブルなReactフォーム設計
righttouch
PRO
0
120
株式会社ログラス − エンジニア向け会社説明資料 / Loglass Comapany Deck for Engineer
loglass2019
3
32k
Oracle Cloud Infrastructure:2024年12月度サービス・アップデート
oracle4engineer
PRO
0
210
LINE Developersプロダクト(LIFF/LINE Login)におけるフロントエンド開発
lycorptech_jp
PRO
0
120
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
810
A Philosophy of Restraint
colly
203
16k
4 Signs Your Business is Dying
shpigford
181
21k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Making Projects Easy
brettharned
116
5.9k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Mobile First: as difficult as doing things right
swwweet
222
9k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Testing 201, or: Great Expectations
jmmastey
40
7.1k
Into the Great Unknown - MozCon
thekraken
33
1.5k
Music & Morning Musume
bryan
46
6.2k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11