Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
810
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
640
Java 8 Lambda Expressions & Streams
newcircle
0
600
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
Strands Agents & Bedrock AgentCoreを1分でおさらい
minorun365
PRO
8
330
プロダクトエンジニアリングで開発の楽しさを拡張する話
barometrica
0
170
Serverless Meetup #21
yoshidashingo
1
120
LLMをツールからプラットフォームへ〜Ai Workforceの戦略〜 #BetAIDay
layerx
PRO
1
980
Google Agentspaceを実際に導入した効果と今後の展望
mixi_engineers
PRO
3
700
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
27
13k
はじめての転職講座/The Guide of First Career Change
kwappa
4
3.7k
Amazon Q Developerを活用したアーキテクチャのリファクタリング
k1nakayama
2
210
Nx × AI によるモノレポ活用 〜コードジェネレーター編〜
puku0x
0
570
生成AI時代におけるAI・機械学習技術を用いたプロダクト開発の深化と進化 #BetAIDay
layerx
PRO
1
1.2k
専門分化が進む分業下でもユーザーが本当に欲しかったものを追求するプロダクトマネジメント/Focus on real user needs despite deep specialization and division of labor
moriyuya
1
1.3k
MCP認可の現在地と自律型エージェント対応に向けた課題 / MCP Authorization Today and Challenges to Support Autonomous Agents
yokawasa
5
2.3k
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
880
Docker and Python
trallard
45
3.5k
Become a Pro
speakerdeck
PRO
29
5.5k
KATA
mclloyd
32
14k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
332
22k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
We Have a Design System, Now What?
morganepeng
53
7.7k
Facilitating Awesome Meetings
lara
54
6.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11