Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
800
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
630
Java 8 Lambda Expressions & Streams
newcircle
0
590
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
大規模アジャイル開発のリアル!コミュニケーション×進捗管理×高品質
findy_eventslides
0
280
Javaの新しめの機能を知ったかぶれるようになる話 #kanjava
irof
3
4.9k
OPENLOGI Company Profile
hr01
0
61k
パスキー導入の課題と ベストプラクティス、今後の展望
ritou
7
1.2k
Redefine_Possible
upsider_tech
0
230
モンテカルロ木探索のパフォーマンスを予測する Kaggleコンペ解説 〜生成AIによる未知のゲーム生成〜
rist
4
1k
ペアプログラミングにQAが加わった!職能を超えたモブプログラミングの事例と学び
tonionagauzzi
1
130
Reactを段階的に覗いてみる
ytaisei
2
940
ルートユーザーの活用と管理を徹底的に深掘る
yuobayashi
6
700
非エンジニアにも伝えるメールセキュリティ / Email security for non-engineers
ykanoh
13
3.8k
頻繁リリース × 高品質 = 無理ゲー? いや、できます!/20250306 Shoki Hyo
shift_evolve
0
150
技術的負債を正しく理解し、正しく付き合う #phperkaigi / PHPerKaigi 2025
shogogg
7
1.7k
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
91
5.9k
The Cost Of JavaScript in 2023
addyosmani
48
7.6k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Making the Leap to Tech Lead
cromwellryan
133
9.2k
KATA
mclloyd
29
14k
Optimizing for Happiness
mojombo
377
70k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.7k
Documentation Writing (for coders)
carmenintech
69
4.7k
Side Projects
sachag
452
42k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Docker and Python
trallard
44
3.3k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11