Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
800
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
630
Java 8 Lambda Expressions & Streams
newcircle
0
590
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
2025-04-24 "Manga AI Understanding & Localization" Furukawa Arata (CyberAgent, Inc)
ornew
1
190
読んで学ぶ Amplify Gen2 / Amplify と CDK の関係を紐解く #jawsug_tokyo
tacck
PRO
1
160
AIでめっちゃ便利になったけど、結局みんなで学ぶよねっていう話
kakehashi
PRO
0
180
Running JavaScript within Ruby
hmsk
3
330
ワールドカフェI /チューターを改良する / World Café I and Improving the Tutors
ks91
PRO
0
120
Mastraに入門してみた ~AWS CDKを添えて~
tsukuboshi
0
270
白金鉱業Meetup_Vol.18_AIエージェント時代のUI/UX設計
brainpadpr
1
130
Рекомендации с нуля: как мы в Lamoda превратили главную страницу в ключевую точку входа для персонализированного шоппинга. Данил Комаров, Data Scientist, Lamoda Tech
lamodatech
0
750
AWS全冠芸人が見た世界 ~資格取得より大切なこと~
masakiokuda
5
6.2k
QA/SDETの現在と、これからの挑戦
imtnd
0
140
LiteXとオレオレCPUで作る自作SoC奮闘記
msyksphinz
0
690
CodePipelineのアクション統合から学ぶAWS CDKの抽象化技術 / codepipeline-actions-cdk-abstraction
gotok365
5
200
Featured
See All Featured
The Language of Interfaces
destraynor
157
25k
Building Applications with DynamoDB
mza
94
6.3k
Practical Orchestrator
shlominoach
186
11k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
How STYLIGHT went responsive
nonsquared
99
5.5k
Designing for Performance
lara
608
69k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.1k
Faster Mobile Websites
deanohume
306
31k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
Site-Speed That Sticks
csswizardry
5
500
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11