Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
810
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
640
Java 8 Lambda Expressions & Streams
newcircle
0
590
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
Tensix Core アーキテクチャ解説
tenstorrent_japan
0
340
Oracle Cloud Infrastructureデータベース・クラウド:各バージョンのサポート期間
oracle4engineer
PRO
48
33k
kubellが挑むBPaaSにおける、人とAIエージェントによるサービス開発の最前線と技術展望
kubell_hr
0
150
IAMのマニアックな話 2025を執筆して、 見えてきたAWSアカウント管理の現在
nrinetcom
PRO
3
140
バクラクのモノレポにおける AI Coding のための環境整備と {Roo,Claude} Code活用事例 / AI Coding in Bakuraku's Monorepo: Environment Setup & Case Studies with {Roo, Claude} Code
upamune
8
5.4k
やさしい認証認可
minorun365
PRO
29
12k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
6
950
データ戦略部門 紹介資料
sansan33
PRO
1
3.2k
Long journey of Continuous Delivery at Mercari
hisaharu
1
200
Snowflake Intelligenceで実現できるノーコードAI活用
takumimukaiyama
1
160
「どこにある?」の解決。生成AI(RAG)で効率化するガバメントクラウド運用
toru_kubota
2
170
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
770
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
52
7.6k
Into the Great Unknown - MozCon
thekraken
39
1.8k
Faster Mobile Websites
deanohume
307
31k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
640
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Code Reviewing Like a Champion
maltzj
524
40k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Designing for Performance
lara
609
69k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11