Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
2k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
830
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
660
Java 8 Lambda Expressions & Streams
newcircle
0
610
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
2
180
形式手法特論:CEGAR を用いたモデル検査の状態空間削減 #kernelvm / Kernel VM Study Hokuriku Part 8
ytaka23
2
460
20251209_WAKECareer_生成AIを活用した設計・開発プロセス
syobochim
7
1.5k
Lessons from Migrating to OpenSearch: Shard Design, Log Ingestion, and UI Decisions
sansantech
PRO
1
130
AWS Trainium3 をちょっと身近に感じたい
bigmuramura
1
140
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
1.4k
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
240
新 Security HubがついにGA!仕組みや料金を深堀り #AWSreInvent #regrowth / AWS Security Hub Advanced GA
masahirokawahara
1
2k
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
490
MapKitとオープンデータで実現する地図情報の拡張と可視化
zozotech
PRO
1
140
技術以外の世界に『越境』しエンジニアとして進化を遂げる 〜Kotlinへの愛とDevHRとしての挑戦を添えて〜
subroh0508
1
450
Microsoft Agent 365 についてゆっくりじっくり理解する!
skmkzyk
0
320
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
GraphQLとの向き合い方2022年版
quramy
50
14k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Bash Introduction
62gerente
615
210k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
Into the Great Unknown - MozCon
thekraken
40
2.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
What's in a price? How to price your products and services
michaelherold
246
13k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11