Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
810
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
640
Java 8 Lambda Expressions & Streams
newcircle
0
600
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
GitHub Copilot の概要
tomokusaba
1
130
生成AIでwebアプリケーションを作ってみた
tajimon
2
150
Delegating the chores of authenticating users to Keycloak
ahus1
0
120
mrubyと micro-ROSが繋ぐロボットの世界
kishima
2
310
Snowflake Summit 2025全体振り返り / Snowflake Summit 2025 Overall Review
mtpooh
2
400
PHP開発者のためのSOLID原則再入門 #phpcon / PHP Conference Japan 2025
shogogg
4
780
20250625 Snowflake Summit 2025活用事例 レポート / Nowcast Snowflake Summit 2025 Case Study Report
kkuv
1
310
Observability infrastructure behind the trillion-messages scale Kafka platform
lycorptech_jp
PRO
0
140
米国国防総省のDevSecOpsライフサイクルをAWSのセキュリティサービスとOSSで実現
syoshie
2
1.1k
PHPでWebブラウザのレンダリングエンジンを実装する
dip_tech
PRO
0
200
生成AI時代 文字コードを学ぶ意義を見出せるか?
hrsued
1
480
標準技術と独自システムで作る「つらくない」SaaS アカウント管理 / Effortless SaaS Account Management with Standard Technologies & Custom Systems
yuyatakeyama
3
1.3k
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Embracing the Ebb and Flow
colly
86
4.7k
BBQ
matthewcrist
89
9.7k
Speed Design
sergeychernyshev
32
1k
Raft: Consensus for Rubyists
vanstee
140
7k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.8k
VelocityConf: Rendering Performance Case Studies
addyosmani
330
24k
It's Worth the Effort
3n
185
28k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11