Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
800
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
630
Java 8 Lambda Expressions & Streams
newcircle
0
590
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
スケールアップ企業のQA組織のバリューを最大限に引き出すための取り組み
tarappo
4
940
SaaSプロダクト開発におけるバグの早期検出のためのAcceptance testの取り組み
kworkdev
PRO
0
440
ルートユーザーの活用と管理を徹底的に深掘る
yuobayashi
6
730
どっちの API SHOW?SharePoint 開発における SharePoint REST API Microsoft Graph API の違い / Which API show? Differences between Microsoft Graph API and SharePoint REST API
karamem0
0
110
Cline、めっちゃ便利、お金が飛ぶ💸
iwamot
19
18k
React Server Componentは 何を解決し何を解決しないのか / What do React Server Components solve, and what do they not solve?
kaminashi
6
1.2k
チームビルディング「脅威モデリング」ワークショップ
koheiyoshikawa
0
140
コンソールで学ぶ!AWS CodePipelineの機能とオプション
umekou
2
110
Amazon Q Developer 他⽣成AIと⽐較してみた
takano0131
1
120
バックエンドエンジニアによるフロントエンドテスト拡充の具体的手法
kinosuke01
1
720
OPENLOGI Company Profile
hr01
0
61k
20250326_管理ツールの権限管理で改善したこと
sasata299
1
380
Featured
See All Featured
RailsConf 2023
tenderlove
29
1k
Designing for Performance
lara
606
69k
Bash Introduction
62gerente
611
210k
How to Ace a Technical Interview
jacobian
276
23k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
The Cost Of JavaScript in 2023
addyosmani
48
7.6k
GitHub's CSS Performance
jonrohan
1030
460k
Statistics for Hackers
jakevdp
798
220k
Six Lessons from altMBA
skipperchong
27
3.7k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7.1k
Being A Developer After 40
akosma
90
590k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11