Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
790
Intro to Spark Streaming
newcircle
1
1.8k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
630
Java 8 Lambda Expressions & Streams
newcircle
0
580
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
2.9k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.7k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.7k
Other Decks in Technology
See All in Technology
Application Development WG Intro at AppDeveloperCon
salaboy
0
200
The Role of Developer Relations in AI Product Success.
giftojabu1
0
140
OCI Network Firewall 概要
oracle4engineer
PRO
0
4.2k
個人でもIAM Identity Centerを使おう!(アクセス管理編)
ryder472
4
230
【Startup CTO of the Year 2024 / Audience Award】アセンド取締役CTO 丹羽健
niwatakeru
0
1.3k
なぜ今 AI Agent なのか _近藤憲児
kenjikondobai
4
1.4k
IBC 2024 動画技術関連レポート / IBC 2024 Report
cyberagentdevelopers
PRO
1
110
インフラとバックエンドとフロントエンドをくまなく調べて遅いアプリを早くした件
tubone24
1
430
TanStack Routerに移行するのかい しないのかい、どっちなんだい! / Are you going to migrate to TanStack Router or not? Which one is it?
kaminashi
0
600
データプロダクトの定義からはじめる、データコントラクト駆動なデータ基盤
chanyou0311
2
330
Security-JAWS【第35回】勉強会クラウドにおけるマルウェアやコンテンツ改ざんへの対策
4su_para
0
180
BLADE: An Attempt to Automate Penetration Testing Using Autonomous AI Agents
bbrbbq
0
320
Featured
See All Featured
Happy Clients
brianwarren
98
6.7k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
109
49k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
4 Signs Your Business is Dying
shpigford
180
21k
Code Review Best Practice
trishagee
64
17k
Thoughts on Productivity
jonyablonski
67
4.3k
What's in a price? How to price your products and services
michaelherold
243
12k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
720
Raft: Consensus for Rubyists
vanstee
136
6.6k
Music & Morning Musume
bryan
46
6.2k
Scaling GitHub
holman
458
140k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11