Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Luke Gotszling - Prediction Using Python
Search
NewCircle Training
September 19, 2013
Technology
1
1.9k
Luke Gotszling - Prediction Using Python
This is a quick introduction to prediction using Python.
NewCircle Training
September 19, 2013
Tweet
Share
More Decks by NewCircle Training
See All by NewCircle Training
Spark: A Coding Joyride | QCon SF 2015
newcircle
0
820
Intro to Spark Streaming
newcircle
1
1.9k
Artisanal Data on the Web: Using JS and Data to Get Literary 21st Century Style
newcircle
0
640
Java 8 Lambda Expressions & Streams
newcircle
0
600
Macros vs Types
newcircle
0
1.3k
Larry Schiefer - Exploring SDK Add-on for Android Devices
newcircle
0
3k
Scala Collections: Why Not? - Paul Phillps
newcircle
2
9.8k
Dave Smith- Mastering the Android Touch System
newcircle
9
16k
Geoff Matrangola- Migrating Your Apps to the New Gradle Build Process
newcircle
1
1.8k
Other Decks in Technology
See All in Technology
『FailNet~やらかし共有SNS~』エレベーターピッチ
yokomachi
1
200
シークレット管理だけじゃない!HashiCorp Vault でデータ暗号化をしよう / Beyond Secret Management! Let's Encrypt Data with HashiCorp Vault
nnstt1
3
160
攻撃と防御で実践するプロダクトセキュリティ演習~導入パート~
recruitengineers
PRO
4
1.8k
実践アプリケーション設計 ①データモデルとドメインモデル
recruitengineers
PRO
5
1.5k
Oracle Cloud Infrastructure:2025年8月度サービス・アップデート
oracle4engineer
PRO
0
180
カミナシ社の『ID管理基盤』製品内製 - その意思決定背景と2年間の進化 #AWSUnicornDay / Kaminashi ID - The Big Whys
kaminashi
3
740
Kubernetes における cgroup v2 でのOut-Of-Memory 問題の解決
pfn
PRO
0
450
PRDの正しい使い方 ~AI時代にも効く思考・対話・成長ツールとして~
techtekt
PRO
0
990
ヘブンバーンズレッドのレンダリングパイプライン刷新
gree_tech
PRO
0
470
Figma + Storybook + PlaywrightのMCPを使ったフロントエンド開発
yug1224
10
3.7k
Webアクセシビリティ入門
recruitengineers
PRO
3
1.5k
実運用で考える PGO
kworkdev
PRO
0
130
Featured
See All Featured
It's Worth the Effort
3n
187
28k
Practical Orchestrator
shlominoach
190
11k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
A Tale of Four Properties
chriscoyier
160
23k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
840
The World Runs on Bad Software
bkeepers
PRO
70
11k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Designing for Performance
lara
610
69k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
910
Agile that works and the tools we love
rasmusluckow
330
21k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Transcript
Introduction to Prediction Luke Gotszling Co-founder & CEO at fina"y.io
luke@fina"y.io @lmgtwit September 11, 2013 | SFPython | San Francisco 1
Shark meets cable http://www.#.com/cms/s/0/4557b69c-c745-11de-bb6f-00144feab49a.html http://www.youtube.com/watch?v=1ex7uTQf4bQ 2
CPU graph 3
Linear regression y = α+βx 4
Linear regression Benefits: We" supported and straightforward calculation Built-in estimate
of the degree of fit: R2 (“coefficient of determination”) Problems: Doesn’t handle cycles Questions about parameters (e.g. amount of entries used for regression and steps of extrapolation) 5
EMA (exponential moving average / exponential smoothing / Holt-Winters) Image
citation: http://lorien.ncl.ac.uk/ming/filter/filewma.htm 6
EMA yt = αxt+(1-α)yt-1 y1=x0 7
EMA Benefits: More recent data weighed more heavily Seasonality can
be taken into account Problems: Relies on reversion to mean Divergence and multiple seasons in data Weighting options 8
Other approaches Higher dimensional polynomial fits (and exponential) Fourier transforms
Machine learning: neural networks... Bayesian RSI (relative strength index) and other methods used in technical analysis in finance 9
Data bit.ly/sfpython_prediction_slides bit.ly/sfpython_prediction_notebook 10
Thank you! luke@finally.io @lmgtwit 11