Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
理論計算機科学における 数学の応用: 擬似ランダムネス
Search
Nobutaka Shimizu
August 16, 2024
Science
1
470
理論計算機科学における 数学の応用: 擬似ランダムネス
東北大学数学科で2024年5月27日に行った談話会での発表資料
keyword: 擬似ランダムネス, エクスパンダーグラフ
Nobutaka Shimizu
August 16, 2024
Tweet
Share
More Decks by Nobutaka Shimizu
See All by Nobutaka Shimizu
Planted Clique Conjectures are Equivalent
nobushimi
0
220
Hardness Self-Amplification: Simplified, Optimized, and Unified
nobushimi
0
290
Hardness Self-Amplification from Feasible Hard-Core Sets
nobushimi
0
200
Nearly Optimal Average-Case Complexity of Counting Bicliques Under SETH
nobushimi
0
160
How Many Vertices Does a Random Walk Miss in a Network with Moderately Increasing the Number of Vertices?
nobushimi
0
140
Quasi-majority Functional Voting on Expander Graphs
nobushimi
0
81
Phase Transitions of Best-of-Two and Best-of-Three on Stochastic Block Models
nobushimi
0
130
Other Decks in Science
See All in Science
mathematics of indirect reciprocity
yohm
1
200
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
140
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
160
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
670
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
170
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
110
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.2k
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.1k
Machine Learning for Materials (Challenge)
aronwalsh
0
340
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
370
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
260
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
200
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.3k
RailsConf 2023
tenderlove
30
1.2k
How GitHub (no longer) Works
holman
315
140k
It's Worth the Effort
3n
187
28k
Docker and Python
trallard
46
3.6k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Pragmatic Product Professional
lauravandoore
36
6.9k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
30
2.7k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Transcript
ཧܭࢉػՊֶʹ͓͚Δ ֶͷԠ༻: ٖࣅϥϯμϜωε ਗ਼ਫ ৳ߴ (౦ژۀେֶ) ஊձ (20245݄27@౦େֶ)
•ཧܭࢉػՊֶͰ(૾Ҏ্ʹ)ֶͷ֓೦͕෯͘ొ •ֶͱཧܭࢉػՊֶͷڞ௨෦ͷҰͭ: ٖࣅϥϯμϜੑ ൃදͷ֓ཁ 2
•ཧܭࢉػՊֶͰ(૾Ҏ্ʹ)ֶͷ֓೦͕෯͘ొ •ֶͱཧܭࢉػՊֶͷڞ௨෦ͷҰͭ: ٖࣅϥϯμϜੑ •ʮ͜Ε͕͜Μͳͱ͜Ζʹڞ௨͕͋Δͷ͔ʂ(ڻ)ʯͱࢥͬͯ΄͍͠ ൃදͷ֓ཁ 3
•ཧܭࢉػՊֶͰ(૾Ҏ্ʹ)ֶͷ֓೦͕෯͘ొ •ֶͱཧܭࢉػՊֶͷڞ௨෦ͷҰͭ: ٖࣅϥϯμϜੑ •ʮ͜Ε͕͜Μͳͱ͜Ζʹڞ௨͕͋Δͷ͔ʂ(ڻ)ʯͱࢥͬͯ΄͍͠ •ʮงғؾʯΛհ ‣ ݫີͳఆٛূ໌ׂѪ ൃදͷ֓ཁ 4
ৗੜ׆ʹ͓͚Δܭࢉػͷར༻ 5
•ܭࢉػͷཧతͳೳྗͦͷݶքΛֶΛͬͯղ໌ (Ԡ༻ֶ) ‣ ࠷దԽΞϧΰϦζϜ ‣ ࠔੑ (ܭࢉྔԼք; ༧) ‣ άϥϑΞϧΰϦζϜ
‣ ҉߸, ֶशཧ ‣ Ϛϧίϑ࿈ ‣ ܭࢉ ‣ ྔࢠΞϧΰϦζϜ ‣ ࢄΞϧΰϦζϜ ‣ σʔλߏ ‣ etc 𝖯 ≠ 𝖭 𝖯 ཧܭࢉػՊֶ (Theoretical Computer Science) 6
TCSͱ(७ਮ)ֶͷܨ͕Γ 7 ରιϘϨϑෆࣜ ϥϯμϜΥʔΫͷղੳ Green—Taoͷఆཧ ऑֶशثͷϒʔεςΟϯά Kazhdanͷੑ࣭ (T) ཚԽ ޡΓగਖ਼ූ߸
Bogolyubov—Ruzsaͷิ ࠷ѱ͔࣌Βฏۉ࣌ͷؼண ପԁۂઢ҉߸ ପԁۂઢ ଟ༷ମͷCheegerఆ ނোੑωοτϫʔΫ άϥεϚϯଟ༷ମ 2-to-2༧ Hilbert’s Nullstellensatz Combinatorial Nullstellensatz ΞΠσΞΛഈआ ྫͷߏ ৽ͨͳઃఆ Connes ͷຒΊࠐΈ༧ MIP*=REఆཧ Baum—Connes༧ ηΩϡϦςΟ ฏۉ࣌ܭࢉྔ ੑ࣭ݕࠪ
TCSͱ(७ਮ)ֶͷܨ͕Γ 8 ରιϘϨϑෆࣜ ϥϯμϜΥʔΫͷղੳ Green—Taoͷఆཧ ऑֶशثͷϒʔεςΟϯά ཚԽ ޡΓగਖ਼ූ߸ Bogolyubov—Ruzsaͷิ ࠷ѱ͔࣌Βฏۉ࣌ͷؼண
ପԁۂઢ҉߸ ପԁۂઢ ଟ༷ମͷCheegerఆ ނোੑωοτϫʔΫ άϥεϚϯଟ༷ମ 2-to-2༧ Hilbert’s Nullstellensatz Combinatorial Nullstellensatz ΞΠσΞΛഈआ ྫͷߏ ৽ͨͳઃఆ Connes ͷຒΊࠐΈ༧ MIP*=REఆཧ Baum—Connes༧ ηΩϡϦςΟ ฏۉ࣌ܭࢉྔ Kazhdanͷੑ࣭ (T) ٖࣅϥϯμϜੑ (pseudorandomness)
•ٖࣅཚͷੜ ‣ ཚΛ͏໘ : ϥϯμϜΥʔΫ, MCMC, ֬తޯ๏, etc. ‣ ࣮ࡍͷܭࢉػͰٖࣅཚΛͬͯΔ
- : ԿΒ͔ͷؔ - ͰٖࣅཚΛͨ͘͞Μੜ ( ΛγʔυͱݺͿ) ‣ ༗໊ͳؔ : ϝϧηϯψπΠελ, ઢܗ߹ಉ๏, etc ‣ ྑ࣭ͳ(=࣍ͷग़͕༧ଌͰ͖ͳ͍)ٖࣅཚ͕ཉ͍͠ f: {0,1}32 → {0,1}32 s → f(s) → f(f(s)) → ⋯ s ٖࣅཚ 9
ٖࣅཚ 10 ग़య: e-Gov ๏ྩݕࡧ (https://elaws.e-gov.go.jp/document?lawid=503M62000000001) Χ ジ ϊཧҕһձؔಛఆෳ߹؍ޫࢪઃ۠Ҭඋ๏ࢪߦنଇ ୈ176ผද
(H30੍ఆ)
ٖࣅཚ 11 ग़య: e-Gov ๏ྩݕࡧ (https://elaws.e-gov.go.jp/document?lawid=503M62000000001) Χ ジ ϊཧҕһձؔಛఆෳ߹؍ޫࢪઃ۠Ҭඋ๏ࢪߦنଇ ୈ176ผද
(H30੍ఆ) •࣭͕ѱ͍ٖࣅཚͷࣄྫ (࣮) ‣ 2006ʹൃച͞ΕͨήʔϜιϑτʹͯʮμΠεͷ࣍ͷग़ͷۮح͕ਪଌͰ͖Δʯ ͱ͍͏க໋తͳόά͕ݟ͔ͭΓɺճऩʹࢸͬͨ.
•ٖࣅཚʹཉ͍͠ੑ࣭ ‣ Ұ༷ϥϯμϜͳ ʹର͠, ͕Ұ༷ϥϯμϜ - ݪཧతʹෆՄೳ ( ͕ܾ·Δͱ ܾ·Δ͔Β)
s (s, f(s)) s f(s) ٖࣅϥϯμϜੑ 12
•ٖࣅཚʹཉ͍͠ੑ࣭ ‣ Ұ༷ϥϯμϜͳ ʹର͠, ͕Ұ༷ϥϯμϜ - ݪཧతʹෆՄೳ ( ͕ܾ·Δͱ ܾ·Δ͔Β)
•ٖࣅϥϯμϜωε ‣ Ұ༷ϥϯμϜͳ ʹର͠, ͕Ұ༷ϥϯμϜͬΆ͘ݟ͑Δ ‣ Ұ༷ͱࣝผͰ͖ͳ͍Α͏ͳ s (s, f(s)) s f(s) s (s, f(s)) ٖࣅϥϯμϜੑ 13 ݅Λ؇
ͷࣝผ 14 01010101010101010101 01000111001111001111 ͋Δ ͔Βੜ͞Εͨ20จࣈ 𝒟 ࣝผऀ A ͬͪ͜Ұ༷ϥϯμϜ͡Όͳ͍
ͬͪ͜Ұ༷ϥϯμϜͰ͋Ζ͏ Ұ༷ ͔Βੜ͞Εͨ20จࣈ 𝒰
ͷࣝผ 15 01010101010101010101 01000111001111001111 ͋Δ ͔Βੜ͞Εͨ20จࣈ 𝒟 Ұ༷ ͔Βੜ͞Εͨ20จࣈ 𝒰
ࣝผऀ A ؔ : 20จࣈ 0 or 1 A ↦ ࣝผऀ ͕ ͱ Λ -ࣝผ ͢Δ A 𝒟 𝒰 ε def ⟺ Pr[A( 𝒟 ) = 1] − Pr[A( 𝒰 ) = 1] > ε
• Λ ʮ01010101010ʯʮ10101010101ʯͷͲͪΒ͔͕֬ Ͱग़ݱ •ࣝผऀ : ‣ 0ͱ1͕ަޓͳΒ1, ͦ͏Ͱͳ͍ͳΒ0Λग़ྗ •
0.999-ࣝผ ‣ ‣ 𝒟 1/2 A(s) A Pr[A( 𝒟 ) = 1] = 1 Pr[A( 𝒰 ) = 1] = 2/211 ≈ 0.001 ͷࣝผ (ྫ) 16
•ٖࣅϥϯμϜωε ‣ ੍ݶ͞ΕͨࣝผऀͷΫϥε Λߟ͑Δ (ଟ߲ࣜ࣌ؒΞϧΰϦζϜͳͲ) 𝒜 ٖࣅϥϯμϜੑ 17
ʹରͯ͠ -ٖࣅϥϯμϜ Ͱ͋Δ ҙͷ ͕ ͱ Λ -ࣝผ͠ͳ͍ 𝒟 𝒜 ε def ⟺ A ∈ 𝒜 𝒟 𝒰 ε શશೳͷࣝผऀ ੍ݶ͞Εͨࣝผऀ 011010100 ૉ൪ͷจࣈ͕1ͩʂ 0ͱ1͕ަޓ͡Όͳ͍͔Β Ұ༷ϥϯμϜ͔ͳ͊
•ٖࣅϥϯμϜωε ‣ ੍ݶ͞ΕͨࣝผऀͷΫϥε Λߟ͑Δ (ଟ߲ࣜ࣌ؒΞϧΰϦζϜͳͲ) 𝒜 ٖࣅϥϯμϜੑ 18
ʹରͯ͠ -ٖࣅϥϯμϜ Ͱ͋Δ ҙͷ ͕ ͱ Λ -ࣝผ͠ͳ͍ 𝒟 𝒜 ε def ⟺ A ∈ 𝒜 𝒟 𝒰 ε ✓ ܭࢉྔతٖࣅϥϯμϜੑ = ͕ޮతͳΞϧΰϦζϜͷ (ྫ: ଟ߲ࣜ࣌ؒΞϧΰϦζϜ) ✓ ߹ͤతٖࣅϥϯμϜੑ = ͕߹ͤతʹఆ·Δؔͷ (ྫ: ࣍ଟ߲ࣜ) 𝒜 𝒜 d
ܭࢉྔతٖࣅϥϯμϜੑ ฏۉ࣌ܭࢉྔ
•ܭࢉྔ: ܭࢉͷෳࡶੑ (࣌ؒ, ۭؒetc) ΛਤΔई ‣ ͕༩͑ΒΕͨͱ͖, Λܭࢉ͢ΔखؒͲΕ͘Β͍͔? x f(x)
ฏۉ࣌ࠔੑ 20
•ܭࢉྔ: ܭࢉͷෳࡶੑ (࣌ؒ, ۭؒetc) ΛਤΔई ‣ ͕༩͑ΒΕͨͱ͖, Λܭࢉ͢ΔखؒͲΕ͘Β͍͔? •࠷ѱ࣌ܭࢉྔ: ࠷ѱͳೖྗʹର͢ΔΞϧΰϦζϜͷڍಈ
‣ ͘͝গͷίʔφʔέʔεʹӨڹ͞Ε͏Δ ‣ “pessimism of worst-case analysis” [Frieze, McDiarmid, 1986] ‣ ༧ x f(x) 𝖯 ≠ 𝖭 𝖯 ฏۉ࣌ࠔੑ 21
•ܭࢉྔ: ܭࢉͷෳࡶੑ (࣌ؒ, ۭؒetc) ΛਤΔई ‣ ͕༩͑ΒΕͨͱ͖, Λܭࢉ͢ΔखؒͲΕ͘Β͍͔? •࠷ѱ࣌ܭࢉྔ: ࠷ѱͳೖྗʹର͢ΔΞϧΰϦζϜͷڍಈ
‣ ͘͝গͷίʔφʔέʔεʹӨڹ͞Ε͏Δ ‣ “pessimism of worst-case analysis” [Frieze, McDiarmid, 1986] ‣ ༧ •ฏۉ࣌ܭࢉྔ: ฏۉతͳೖྗʹର͢ΔΞϧΰϦζϜͷڍಈ ‣ গͳ͍ίʔφʔέʔεʹӨڹ͞Εʹ͍͘ x f(x) 𝖯 ≠ 𝖭 𝖯 ฏۉ࣌ࠔੑ 22
•ؔ ͷܭࢉ͕ฏۉ࣌ࠔ ‣ Ұ༷ϥϯμϜͳ ʹରͯ͠, ͷܭࢉ͕͍͠ ‣ ྫ: 10ܻͷϥϯμϜͳೋͭͷૉͷੵͷૉҼղ͍͠ (RSA҉߸)
f x f(x) ฏۉ࣌ࠔੑ 23
•ؔ ͷܭࢉ͕ฏۉ࣌ࠔ ‣ Ұ༷ϥϯμϜͳ ʹରͯ͠, ͷܭࢉ͕͍͠ ‣ ྫ: 10ܻͷϥϯμϜͳೋͭͷૉͷੵͷૉҼղ͍͠ (RSA҉߸)
•ฏۉ࣌ࠔͳؔ ٖࣅཚੜث ‣ ʮ͍͠ʯͱ͍͏ωΨςΟϒͳੑ࣭ΛϙδςΟϒͳ݁ՌʹԠ༻ ‣ ͕ฏۉ࣌ࠔ ҙͷଟ߲ࣜ࣌ؒΞϧΰϦζϜʹͱٖͬͯࣅϥϯμϜ - Ұ༷ϥϯμϜͳ ʹରͯ͠ ͷܭࢉ͍͔͠Β f x f(x) ⇒ f ⟺ (s, f(s)) s f(s) ฏۉ࣌ࠔੑ 24 [Nisan, Wigderson, 1994]
҉߸ 25 •҉߸ •डͨ͠ୈࡾऀʹ͍͔ͳΔใ࿙Ε͍͚ͯͳ͍ ‣ ҉߸จʹԿΒ͔ͷ౷ܭతಛ͕͋ͬͨΒඇࣗ໌ͳใ͕࿙ΕΔ ‣ ୈࡾऀʹͱͬͯϥϯμϜͳจࣈྻʹݟ͑Δ͖ Apple 0011101000100
҉߸ 26 •҉߸ •डͨ͠ୈࡾऀʹ͍͔ͳΔใ࿙Ε͍͚ͯͳ͍ ‣ ҉߸จʹԿΒ͔ͷ౷ܭతಛ͕͋ͬͨΒඇࣗ໌ͳใ͕࿙ΕΔ ‣ ୈࡾऀʹͱͬͯϥϯμϜͳจࣈྻʹݟ͑Δ͖ - ୈࡾऀ੍ݶ͞ΕͨܭࢉೳྗΛ༗͢ΔͱԾఆ
Apple 0011101000100
҉߸ 27 •҉߸ •༗໊ͳ҉߸ํࣜ ‣ RSA҉߸ (ϥϯμϜͳڊେͳೋͭͷૉͷੵͷૉҼղͷࠔੑΛԾఆ) ‣ ֨ࢠ҉߸ (ϥϯμϜͳ֨ࢠ্Ͱͷ࠷֨ࢠͷࠔੑΛԾఆ)
‣ ڀۃతͳඪ: ͷԾఆͷԼͰ҆શͳ҉߸Λ࡞Δ •ฏۉ࣌ࠔͳ 㱺 ΄ͱΜͲͷೖྗͰਖ਼͘͠ղ͚ͳ͍ 𝖯 ≠ 𝖭 𝖯 Apple 0011101000100
҉߸ 28 ग़య: e-Gov ๏ྩݕࡧ (https://elaws.e-gov.go.jp/document?lawid=413M60000418002)
҉߸ 29 ग़య: e-Gov ๏ྩݕࡧ (https://elaws.e-gov.go.jp/document?lawid=413M60000418002) •๏ྩͷจݴʹʮૉҼղʯʮ༗ݶମʯʮପԁۂઢʯ •େਉ͕ೝΊΕOKΒ͍͠
߹ͤతٖࣅϥϯμϜੑ ΤΫεύϯμʔάϥϑ
• : -ਖ਼ଇάϥϑ ‣ શʹଓ͍ͯ͠Δล͕ ຊ • : ୯७ϥϯμϜΥʔΫͷભҠ֬ߦྻ ‣
୯७ϥϯμϜΥʔΫ : Ұ༷ϥϯμϜͳྡʹભҠ ‣ G d d P P(u, v) = { 1 d 0 ΤΫεύϯμʔάϥϑ 31 3-ਖ਼ଇάϥϑ ͕ลΛͳ͢ {u, v} ͦΕҎ֎
• : -ਖ਼ଇάϥϑ ‣ શʹଓ͍ͯ͠Δล͕ ຊ • : ୯७ϥϯμϜΥʔΫͷભҠ֬ߦྻ ‣
୯७ϥϯμϜΥʔΫ : Ұ༷ϥϯμϜͳྡʹભҠ ‣ G d d P P(u, v) = { 1 d 0 ΤΫεύϯμʔάϥϑ 32 3-ਖ਼ଇάϥϑ ͕ลΛͳ͢ {u, v} ͦΕҎ֎ ఆٛ (ΤΫεύϯμʔάϥϑ) ભҠ֬ߦྻ ͷݻ༗ ͕ Λຬͨ͢ͱ͖ -ΤΫεύϯμʔͱ͍͏. P 1 = λ1 ≥ … ≥ λn ≥ − 1 max{|λ2 |, |λn |} ≤ λ λ
• : -ਖ਼ଇάϥϑ ‣ શʹଓ͍ͯ͠Δล͕ ຊ • : ୯७ϥϯμϜΥʔΫͷભҠ֬ߦྻ ‣
୯७ϥϯμϜΥʔΫ : Ұ༷ϥϯμϜͳྡʹભҠ ‣ G d d P P(u, v) = { 1 d 0 ΤΫεύϯμʔάϥϑ 33 3-ਖ਼ଇάϥϑ ͕ลΛͳ͢ {u, v} ͦΕҎ֎ ఆٛ (ΤΫεύϯμʔάϥϑ) ભҠ֬ߦྻ ͷݻ༗ ͕ Λຬͨ͢ͱ͖ -ΤΫεύϯμʔͱ͍͏. P 1 = λ1 ≥ … ≥ λn ≥ − 1 max{|λ2 |, |λn |} ≤ λ λ ؆୯ͷͨΊৗʹਖ਼ଇੑΛԾఆ ( ରশͳͷͰ࣮ݻ༗Λͭ) P
•ϥϯμϜΥʔΫͷऩଋੑ ‣ άϥϑ͕͋Δ݅Λຬͨ͢ͱ ͷ ্ͷҰ༷ʹҰҙʹऩଋ ‣ ऩଋͷ͞ͲΕ͘Β͍͔? Xt V ϥϯμϜΥʔΫͱΤΫεύϯμʔ
34 ೋ෦άϥϑ্Ͱऩଋ͠ͳ͍ ඇ࿈݁ͩͱऩଋઌ͕ҰҙͰͳ͍
•ϥϯμϜΥʔΫͷऩଋੑ ‣ άϥϑ͕͋Δ݅Λຬͨ͢ͱ ͷ ্ͷҰ༷ʹҰҙʹऩଋ ‣ ऩଋͷ͞ͲΕ͘Β͍͔? •ΤΫεύϯμʔάϥϑ ‣ ϥϯμϜΥʔΫͷऩଋ͕͍άϥϑ
Xt V ϥϯμϜΥʔΫͱΤΫεύϯμʔ 35 ೋ෦άϥϑ্Ͱऩଋ͠ͳ͍ ඇ࿈݁ͩͱऩଋઌ͕ҰҙͰͳ͍
•ૄͳΤΫεύϯμʔάϥϑ : ૄͳͷʹ࿈݁ੑ͕ڧ͍ ΤΫεύϯμʔͷݟͨ 36 ؆୯ʹஅͰ͖ͦ͏ அ͠ʹ͍͘
‣ ( ) ‣ શͯͷ -ΤΫεύϯμʔ •ఆ ʹରͯ͠
-ΤΫεύϯμʔଘࡏ͢Δ͔? ‣ ϥϯμϜʹ࡞Δͱਖ਼ͷ֬Ͱ (֬తख๏) ‣ ϥϯμϜਖ਼ଇάϥϑ •ϥϯμϜωεΛΘͣʹߏͰ͖Δ͔? (ཚ) → ∞ i → ∞ Gi λ λ < 1 λ λ = 2 d − 1 d + 0.01 ΤΫεύϯμʔάϥϑ 37 -ਖ਼ଇάϥϑͷ -ΤΫεύϯμʔͰ͋Δ d (Gi )i∈ℕ λ def ⟺ [Friedman, 2008]
•తͳߏ ‣ έΠϦʔάϥϑ (܈ͷ࡞༻ΛௐΔॏཁͳಓ۩) ‣ Margulisͷߏ (1973) … ‣ Lubotzky,
Phillips, and Sarnak (1988) ‣ Margulis (1988) ‣ Morgenstern (1994) ‣ ࣍ ͕ಛผͳ߹ͷߏ λ = 5 2 8 < 0.9 d ΤΫεύϯμʔͷߏ 38
•తͳߏ ‣ έΠϦʔάϥϑ (܈ͷ࡞༻ΛௐΔॏཁͳಓ۩) ‣ Margulisͷߏ (1973) … ‣ Lubotzky,
Phillips, and Sarnak (1988) ‣ Margulis (1988) ‣ Morgenstern (1994) ‣ ࣍ ͕ಛผͳ߹ͷߏ λ = 5 2 8 < 0.9 d ΤΫεύϯμʔͷߏ 39 ϥϚψδϟϯάϥϑ (“࠷దͳ”ΤΫεύϯμʔੑΛͭ) λ ≈ 2 d − 1 d
•߹ͤతͳߏ ‣ తͳߏͩͱײ (ͳͥΤΫεύϯμʔੑ͕Γཱͭͷ͔? )͕͍͠ ‣ Reingold, Vadhan, Wigderson (2002)
- δάβάੵ ‣ Marcus, Spielman, Srinivasta (2015) - શͯͷೋ෦ϥϚψδϟϯάϥϑͷߏ - ৫Γࠞͥଟ߲ࣜ (interlacing polynomial) •ະղܾ: ࣍7ͷϥϚψδϟϯάϥϑͷߏ ΤΫεύϯμʔͷߏ (ଓ) 40
•ཁૉ ͷू߹ ʹର͠, ࣍ͷ ্ͷ Λߟ͑Δ ‣ ্ͷ -ਖ਼ଇΤΫεύϯμʔάϥϑ Λߟ͑Δ
‣ ΛҰ༷ϥϯμϜʹબͿ ‣ Λ࢝ͱ͢Δ͞ ͷϥϯμϜΥʔΫͷܦ༝ Λग़ྗ n V Vℓ 𝒟 V d G = (V, E) u1 u1 ℓ − 1 (u1 , …, uℓ ) ٖࣅϥϯμϜੑ 41 u1 u2 uℓ
ٖࣅϥϯμϜੑ 42 άϥϑ ͕ -ΤΫεύϯμʔͳΒ, ʹର͠ -ٖࣅϥϯμϜ G λ
𝒟 𝒜 = {AS : S ⊆ V} (λ/4) ෦ू߹ ʹର͠, Λ S ⊆ V AS : Vℓ → {0,1} AS (u1 , …, uℓ ) = { 1 0 {u1 , …, uℓ } ∩ S ≠ ∅ ͦΕҎ֎ ఆཧ u1 u2 uℓ S = ్தͰ ͷΛ௨ա͔ͨ͠Ͳ͏͔ AS (u1 , …, uℓ ) S
• ͷݩʹʮ͋ͨΓʯorʮͣΕʯ͕͋Δ ‣ গͳ͘ͱ ݸͷʮ͋ͨΓʯ͕͋Δ - Ұ༷ϥϯμϜʹҾ͍͕ͨ͋ͨΔ֬ = •ಠཱҰ༷ϥϯμϜʹ ճ͘͡ΛҾ͘
‣ ʮ͋ͨΓʯ͕ҰճҎ্ग़Δ֬ = ‣ ճҾ͚, 99%ͷ֬Ͱ͋ͨΓΛҾ͚Δ ‣ ͜ͷͱ͖, ϏοτͷϥϯμϜωε͕ඞཁ V δn δ ℓ 1 − (1 − δ)ℓ ℓ = 10/δ 10 log2 n δ Ԡ༻ 43
• ͷݩʹʮ͋ͨΓʯorʮͣΕʯ͕͋Δ ‣ গͳ͘ͱ ݸͷʮ͋ͨΓʯ͕͋Δ - Ұ༷ϥϯμϜʹҾ͍͕ͨ͋ͨΔ֬ = • -ΤΫεύϯμʔάϥϑ্Ͱ
ʹैͬͯ ճ͘͡ΛҾ͘ ‣ άϥϑͷ࣍ ʹґଘ͠ͳ͍ఆʹͰ͖Δ ‣ -ٖࣅϥϯμϜͳͷͰ98%ͷ֬Ͱʮ͋ͨΓʯΛҾ͘ ‣ ༻͍ͨϥϯμϜωε V δn δ 0.04 𝒟 ℓ d n 𝒟 0.01 log2 n + 10 log2 d δ Ԡ༻ 44 u1 u2 uℓ ʮ͋ͨΓʯ ಠཱαϯϓϦϯάΑΓগͳ͍ʂ
•PCPఆཧ •ޡΓగਖ਼ූ߸ •ٖࣅཚੜث •ϋογϡؔ •ฏۉ࣌ܭࢉྔ ΤΫεύϯμʔάϥϑͷԠ༻ 45 [Charles, ’09] [Guruswami,
Kabanets, ’08], [Goldreich, Impagliazzo, Levin, Venkatesan, Zuckerman, 90] [Goldreich, 00] [Sipser, Spielman, 96] [Dinur, 07]
•୯ମෳମͷΤΫεύϯμʔੑ ‣ ߴ࣍ݩΤΫεύϯμʔ •ͷະղܾͷղܾͷཱऀ ‣ ϚτϩΠυʹؔ͢ΔMihail—Vazirani༧ ‣ ہॴݕࠪՄೳޡΓగਖ਼ූ߸ͷߏ •ຊߨٛͰհ ۙͷಈ:
ߴ࣍ݩΤΫεύϯμʔ 46
•ٖࣅϥϯμϜωε ‣ ७ਮֶͱTCSͷ྆ํʹݱΕΔ֓೦ ‣ , ܈, زԿֶʹԠ༻͞Ε͍ͯΔ(Β͍͠) •ΤΫεύϯμʔάϥϑ ‣ έΠϦʔάϥϑΛͬͯߏ
‣ ϥϯμϜωεΛʮઅʯͯ͘͠͡ΛҾ͘ํ๏ •ߴ࣍ݩΤΫεύϯμʔ ‣ ۙͷTCSͰϗοτͳ ‣ ߨٛͰΓ·͢ʂ ·ͱΊ 47 [Lubotzky, ’12]