Upgrade to Pro — share decks privately, control downloads, hide ads and more …

How Many Vertices Does a Random Walk Miss in a ...

How Many Vertices Does a Random Walk Miss in a Network with Moderately Increasing the Number of Vertices?

slide at SODA2021

Avatar for Nobutaka Shimizu

Nobutaka Shimizu

July 05, 2022
Tweet

More Decks by Nobutaka Shimizu

Other Decks in Research

Transcript

  1. /28 3 )JUUJOH5JNFBOE$PWFS5JNF w )PXGBTUEPFTB38TQSFBET  w IJUUJOHUJNF  

    w DPWFSUJNF  w .BOZQSFWJPVTXPSLTTUVEZJOH38POTUBUJDHSBQIT thit max u,v E[38IJUTvTUBSUJOHGSPNV] tcov = max u E[38WJTJUTBMMWFSUJDFTTUBSUJOHGSPNu] [Aleliunas, Karp, Lipton, Lovász, Rackoff, 1979] [Feige, 1995] [Feige, 1995] [Matthews, 1988]
  2. /28 5 38PO%ZOBNJD(SBQIT ɾ TFRVFODF PGHSBQITTU  ɾ*GBMM BSF SFHVMBS

      ɾ38POSFDVSSJOHGBNJMZ TQFDJ fi DUZQFPG  ɾ"MM BSFSBOEPNHSBQI ∃ (Gt ) tcov = 2Ω(n) Gt d thit = O(n2) Gt Gt [Avin, Kousky, Lotler, 2008] [Sauerwald, Zanetti, 2019] [Oksana and Luís, 2014] [Cai, Sauerwald, Zanetti, 2020] Most previous works consider the case of a static vertex set (i.e., for all ) V(Gt ) = V t Consider RW on a sequence of graphs. G0 , G1 , …
  3. /28 7 0VS'SBNFXPSL ɾ8FGPDVTPONPEFSBUFMZHSPXJOHHSBQIT ɾLet be a function (duration ɾLet

    be graphs s.t. ɾ is obtained by adding a vertex and edges to . 𝔡 : ℕ → ℕ (G(i))i∈ℕ V(G(i)) = {v1 , …, vi } G(i+1) G(i) 7 ɾ PGVOWJTJUFEWFSUJDFTBGUFS38PO 5IFO  U = Un = Gn E[U] = ? SPVOE ɾ'PSFBDI QFSGPSN38PGMFOHUI POFBDI  i 𝔡 (i) G(i) *OUIJTTFUUJOH XFDBOBQQMZBOBMZTJTUFDIOJRVFTPG38
  4. /28 3FMBUFE8PSL w .PTUQSFWJPVTXPSLTTUVEJFEB38POBTUBUJDWFSUFYTFU 9 [Avin, Kousky, Lotler, 2008] [Sauerwald,

    Zanetti, 2019] [Oksana and Luís, 2014] [Cai, Sauerwald, Zanetti, 2020] ɾ5IFPOMZFYDFQUJPOJT[Cooper, Frieze, 2002] XIPDPOTJEFSFE38POHSPXJOH QSFGFSFOUJBMBUUBDINFOUNPEFMXJUIDPOTUBOU 5IFZQSPWFEUIBU  BT 𝔡 (i) E[U]/n → const n → ∞
  5. /28 10 0CTFSWBUJPOT ɾ*G UIFO UIF38WJTJUTBMMWFSUJDFTBUFBDISPVOE 𝔡 (i) ≫ tcov

    (G(i)) 10 ɾ4VQQPTF GPSBMM 5IFO 𝔡 (i) ≥ (1 + ϵ)thit (G(i)) i E[U] = n ∑ i=1 Pr[vi JTVOWJTJUFE] = O(1) . Pr[vi JTVOWJTJUFE] = Pr ⋀ j≥i {vi JTVOWJTJUFEBUjUISPVOE} UIBSSJWBMWFSUFY JF  i V(Gi )∖V(Gi−1 ) ≤ (1 + ϵ)−(n−i+1) 5IFSFGPSF ɾ)PXBCPVU  𝔡 (i) ≪ thit (G(i))
  6. /28 11 3FTVMUT 11 Theorem 1 Consider a lazy and

    reversible RW on a moderately growing graph. If , then . 𝔡 (i) ≥ 3Cthit (G(i)) N + 2tmix (G(i)) E[U] ≤ 8N + 32 ɾ3FTVMUGPSHSBQITXJUI  FH FYQBOEFSHSBQIT thit (G(i)) ≫ tmix (G(i)) ɾ8FDBOOPUBQQMZ5IFPSFNJG  FH QBUI thit (G(i)) ≈ tmix (G(i)) ɾ"UFBDISPVOE 38NJYFTFOPVHITJODF 𝔡 (i) ≥ 2tmix (G(i))
  7. /28 12 3FTVMUT 12 Theorem 2 (informal) Consider a lazy

    simple RW on a growing graph. Suppose that and Then, . |E(G(i))| |E(G(i−1))| ≤ 1 + O(i−1) 𝔡 (i) ≥ Ω ( thit (Gi ) iγ ) E[U] = O(nγ) ɾ8FDBOBQQMZ5IFPSFNJGUIFFEHFTNPEFSBUFMZJODSFBTF FH QBUI
  8. /28 13 &YBNQMF 13 5IFSFJTBDPOTU TVDIUIBU GPSBOZ C > 0

    γ ∈ [0,1] 0OBHSPXJOHDPNQMFUFHSBQI  ɾ  ɾ 𝔡 (i) ≥ Ci1−γ ⇒ E[U] = O(nγ) 𝔡 (i) ≤ Ci1−γ ⇒ E[U] = Ω(nγ) 0OBHSPXJOHQBUI ɾ  ɾ 𝔡 (i) ≥ Ci2−γ ⇒ E[U] = O(nγ) 𝔡 (i) ≤ Ci2−γ ⇒ E[U] = Ω(nγ) ˎ-PXFSCPVOETBSFTIPXOCZBOBEIPDXBZ
  9. /28 14 *EFBPG1SPPG 14  "TBXBSNVQ DPOTJEFSBHSPXJOHDPNQMFUFHSBQI  8FFYUFOEUIFBSHVNFOUUPUIFHFOFSBMDBTF Theorem

    2 (reminder) Consider a lazy simple RW on a growing graph. Suppose that and Then, . |E(G(i))| |E(G(i−1))| ≤ 1 + O(i−1) 𝔡 (i) ≥ Ω ( thit (Gi ) iγ ) E[U] = O(nγ)
  10. /28 15 8BSN6Q$PNQMFUF(SBQI 15 ɾ4VQQPTF IBTBTFMGMPPQPOFBDIWFSUFY G(i) = Ki 38WJTJU

    XQ v ∈ V(G(i)) 1/i ɾPr[vJTVOWJTJUFEEVSJOHSPVOEi] = (1 − 1 i ) (i) Pr[vi JTVOWJTJUFEBMMUIFUJNF] = n ∏ j=i (1 − 1 j ) (j) E[U] = n ∑ i=1 n ∏ j=i (1 − 1 j ) 𝔡 (j)
  11. /28 16 8BSN6Q$PNQMFUF(SBQI 16 ɾ6QQFSCPVOE 𝔡 (i) ≥ Ci1−γ ⇒

    E[U] = O(nγ) &WBMVBUFE[U] = n ∑ i=1 n ∏ j=i (1 − 1 j ) 𝔡 (j) n ∏ j=i (1 − 1 j ) 𝔡 (i) ≤ exp − n ∑ j=i C jγ ≤ exp (−(n − i + 1) C nγ ) . E[U] ≤ n ∑ i=1 exp (−(n − i + 1) C nγ ) = O(nγ) . )FODF □
  12. /28 17 8BSN6Q$PNQMFUF(SBQI 17 ɾ-PXFSCPVOE 𝔡 (i) ≤ Ci1−γ ⇒

    E[U] = Ω(nγ) &WBMVBUFE[U] = n ∑ i=1 n ∏ j=i (1 − 1 j ) 𝔡 (j) n ∏ j=i (1 − 1 j ) 𝔡 (i) ≥ n ∏ j=i (1 − 1 j ) Cn1−γ = ( i − 1 n ) Cn1−γ . E[U] ≥ n ∑ i=1 ( i − 1 n ) Cn1−γ = Ω(nγ) )FODF □
  13. /28 18 &YUFOEUP(FOFSBM(SBQI 18 E[U] = n ∑ i=1 n

    ∏ j=i (1 − 1 j ) 𝔡 (j) 0O GPSBOZ BOE  Ki u, v ∈ V(Ki ) t Pr[τu,v > t] = (1 − 1 i ) t ˎ UJNFGPS38UPWJTJU TUBSUJOHGSPN τu,v v u
  14. /28 19 &YUFOEUP(FOFSBM(SBQI 19 E[U] = n ∑ i=1 n

    ∏ j=i (1 − 1 j ) 𝔡 (j) 0O GPSBOZ BOE  Ki u, v ∈ V(Ki ) t Pr[τu,v > t] = (1 − 1 i ) t ˎ UJNFGPS38UPWJTJU TUBSUJOHGSPN τu,v v u ˎ-B[Z JSSFEVDJCMF BOEMB[Z38 ˎ JTUIFTUBUJPOBSZEJTU π ∈ [0,1]V [Aldous, Fill, 2002], [Oliveira, Peres, 2019] HFOFSBMJ[F 'PSBOZ BOE  v ∈ V(G) t Pr u∼π [τu,v > t] ≤ ( 1 − 1 thit ) t
  15. /28 20 &YUFOEUP(FOFSBM(SBQI 20 E[U] = n ∑ i=1 n

    ∏ j=i (1 − 1 j ) 𝔡 (j) 0O GPSBOZ BOE  Ki u, v ∈ V(Ki ) t Pr[τu,v > t] = (1 − 1 i ) t ˎ UJNFGPS38UPWJTJU TUBSUJOHGSPN τu,v v u ˎ-B[Z JSSFEVDJCMF BOEMB[Z38 ˎ JTUIFTUBUJPOBSZEJTU π ∈ [0,1]V [Aldous, Fill, 2002], [Oliveira, Peres, 2019] E[U] ≤ n ∑ i=1 n ∏ j=i ( 1 − 1 thit (G(j))) 𝔡 (j) 🤔 HFOFSBMJ[F 'PSBOZ BOE  v ∈ V(G) t Pr u∼π [τu,v > t] ≤ ( 1 − 1 thit ) t
  16. /28 E[U] ≤ n ∑ i=1 n ∏ j=i (

    1 − 1 thit (G(j))) 𝔡 (j) 21 &YUFOEUP(FOFSBM(SBQI 21 E[U] = n ∑ i=1 n ∏ j=i (1 − 1 j ) 𝔡 (j) 0O GPSBOZ BOE  Ki u, v ∈ V(Ki ) t Pr[τu,v > t] = (1 − 1 i ) t ˎ UJNFGPS38UPWJTJU TUBSUJOHGSPN τu,v v u ˎ-B[Z JSSFEVDJCMF BOEMB[Z38 ˎ JTUIFTUBUJPOBSZEJTU π ∈ [0,1]V [Aldous, Fill, 2002], [Oliveira, Peres, 2019] 😓 HFOFSBMJ[F 'PSBOZ BOE  v ∈ V(G) t Pr u∼π [τu,v > t] ≤ ( 1 − 1 thit ) t 0VSHSBQIJTEZOBNJD DIBOHFTPWFSUJNF π
  17. /28 22 &YUFOEUP(FOFSBM(SBQI 22 E[U] ≤ n ∑ i=1 n

    ∏ j=i ( 1 − 1 thit (G(j))) 𝔡 (j) Lemma E[U] ≤ O(1) ⋅ n ∑ i=1 n ∏ j=i max v∈V(G(j)) π(j−1)(v) π(j)(v) ( 1 − 1 thit (G(j))) (j) JTTUBUJPOBSZEJTUPG π(j) G(j) *G DIBOHFTNPEFSBUFMZ UIFOXFDBOFWBMVBUF  π(i) E[U] 😓 😄
  18. /28 23 1SPPG4LFUDI 23  Pr[vi JTVOWJTJUFE] ≈ ∏ j≥i

    SBUJPCFUXFFO BOE   Xt π(j) × Pr u∼π [τu,v > t] *G  UIJTUFSN  𝔡 (j) ≥ tmix (G(j)) ≈ 1 [Aldous, Fill, 2002], [Oliveira, Peres, 2019] 'PSBOZ BOE  v ∈ V(G) t Pr u∼π [τu,v > t] ≤ ( 1 − 1 thit ) t ˎ DBOCFNVDIMFTTUIBOUIFNJYJOHUJNF😓 𝔡 (j) ˎ JTTUBUJPOBSZEJTUPG π(j) G(j)
  19. /28 24 #FIBWJPSPG38 24 0OBTUBUJDHSBQI  EJTUSJCVUJPOPG38 → π π

    [0,1]V EJTUPGXt t → ∞ 0OBEZOBNJDHSBQI  DIBOHFTPWFSUJNF π π(i) EJTUPGXt t → ∞ π(i+1)
  20. /28 25 #FIBWJPSPG38 25 0OBTUBUJDHSBQI  EJTUSJCVUJPOPG38 → π π

    [0,1]V EJTUPGXt t → ∞ 0OBEZOBNJDHSBQI  DIBOHFTPWFSUJNF π π(i) EJTUPGXt t → ∞ π(i+1) *G DIBOHFTNPEFSBUFMZ  XFDBOCPVOEUIFEJTUBODF π
  21. /28 26 &YUFOEUP(FOFSBM(SBQI 26 Lemma E[U] ≤ O(1) ⋅ n

    ∑ i=1 n ∏ j=i max v∈V(G(j)) π(j−1)(v) π(j)(v) ( 1 − 1 thit (G(j))) (j) JTTUBUJPOBSZEJTUPG π(j) G(j) *G DIBOHFTNPEFSBUFMZ UIFOXFDBOFWBMVBUF  π(i) E[U]
  22. /28 27 1SPPGWJB-FNNB 27 'SPNBTTVNQUJPO Theorem 2 (reminder) Consider a

    lazy simple RW on a growing graph. Suppose that and . Then, . |E(G(i))| |E(G(i−1))| ≤ 1 + O(i−1) 𝔡 (i) ≥ Ω ( thit (Gi ) iγ ) E[U] = O(nγ) π(i−1)(v) π(i)(v) = deg(i−1)(v) 2|E(G(i−1))| ⋅ 2|E(G(i))| deg(i)(v) ≤ |E(G(i))| |E(G(i−1) | ≤ 1 + O(i−1) 5IFO max v∈V(G(j)) π(j−1)(v) π(j)(v) ( 1 − 1 thit (G(j))) 𝔡 (j) ≤ ( 1 − 1 thit (G(j))) (j)−O( thit(G(j)) j ) ≈ ( 1 − 1 thit (G(j))) (j) )FODF E[U] ≤ O(1) ⋅ n ∑ i=1 n ∏ j=i ( 1 − 1 thit (G(j))) 𝔡 (j)
  23. /28 28 $PODMVTJPO 28 ɾ8FJOUSPEVDF38POHSPXJOHHSBQIT ɾ"OBMZTJTJTUSBDUBCMF*G DIBOHFTNPEFSBUFMZ π ɾ$BOXFBQQMZUFDIOJRVFTPGQSFWJPVTXPSLTUPUIFHSPXJOHTFUUJOH 'VUVSF%JSFDUJPO

    ɾ)JUUJOHUJNF NJYJOHUJNF FUDPOHSPXJOHHSBQIT [Avin, Kousky, Lotler, 2008] [Sauerwald, Zanetti, 2019] [Oksana and Luís, 2014] [Cai, Sauerwald, Zanetti, 2020]