Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Nearly Optimal Average-Case Complexity of Count...

Nearly Optimal Average-Case Complexity of Counting Bicliques Under SETH

Slide of my talk at SODA2021.

Avatar for Nobutaka Shimizu

Nobutaka Shimizu

July 05, 2022
Tweet

More Decks by Nobutaka Shimizu

Other Decks in Research

Transcript

  1. /27 "WFSBHF$BTF$PNQMFYJUZ w %JTUSJCVUJOPBM1SPCMFN  (Π, 𝒟 ) 2 w

    JTBQSPCMFN BOTXFSGPSJOQVU Π Π(x) x w JTBTFRVFODFPGEJTUSJCVUJPOT 𝒟 = ( 𝒟 n )n∈ℕ A (deterministic) algorithm solves with success probability if A (Π, 𝒟 ) δ [Levin, 1986] ∀n ∈ ℕ, Pr x∼ 𝒟 n [A(x) = Π(x)] ≥ δ w )BSEOFTTGPSBSBOEPNJOQVU
  2. /27 3 - Hamilton cycle : in time ( with

    - chromatic number : 2-approx. in time [Grimmett, McDiarmid, 1975] - max clique : 2-approx. in time [Karp, 1976] - max matching: in time [Motwani, 1994] O(n(log n)2) G(n, p) p ≈ C log n/n O(n3) O(n2) O(m log n) &BTZ1SPCMFNTPO3BOEPN(SBQI [Angluin and Valiant, 1979]
  3. /27 )BSE1SPCMFNTPO3BOEPN(SBQIT w .BYJNVNDMJRVFBENJUTBQQSPYQPMZUJNFBMHPSJUIN ˠ$POKFDUVSFUIBU BQQSPYJTIBSEJOQPMZUJNF[Karp, 1976] (2 − ϵ)

    4 ɾSubgraph counting problems [Dalirrooyfard, Lincoln, Williams, 2020] w $MJRVFDPVOUJOH[Goldreich, Rothblum, 2018] [Boix-Adserà, Brennan, Bresler, 2019] k w 1MBOUFEDMJRVF
  4. /27 )BSE1SPCMFNTPO3BOEPN(SBQIT w .BYJNVNDMJRVFBENJUTBQQSPYQPMZUJNFBMHPSJUIN ˠ$POKFDUVSFUIBU BQQSPYJTIBSEJOQPMZUJNF[Karp, 1976] (2 − ϵ)

    5 ɾSubgraph counting problems [Dalirrooyfard, Lincoln, Williams, 2020] w $MJRVFDPVOUJOH[Goldreich, Rothblum, 2018] [Boix-Adserà, Brennan, Bresler, 2019] k w 1MBOUFEDMJRVF based on worst-case hardness
  5. /27 8PSTU$BTFUP"WFSBHF$BTF 6 ɾ such that is reducible to [Goldreich,

    Rothblum, 2018] ɾ is reducible to with overhead [Boix-Adserà, Brennan, Bresler, 2019] ∃ 𝒟 #Ka (#Ka , 𝒟 ) #Ka (#Ka , G(n, p)) O(p−1) Worst-case to average-case reduction for graph problems: Theorem Under (randomized) ETH, any -time algorithm for has success prob. for any constant . no(a) (#Ka , G(n, p)) ≤ 1 − 1/polylog(n) p [Boix-Adserà, Brennan, Bresler, 2019] ɾFor general subgraph , is reducible to H #H (#H, G(n, p)) [Dalirrooyfard, Lincoln, Williams, 2020]
  6. /27 *TTVF4VDDFTT1SPCBCJMJUZ 7 Theorem Under (randomized) ETH, any -time algorithm

    for has success prob. for any constant . no(a) (#Ka , G(n, p)) ≤ 1 − 1/polylog(n) p [Boix-Adserà, Brennan, Bresler, 2019]
  7. /27 *TTVF4VDDFTT1SPCBCJMJUZ w 5IFSFTVMUBCPWFMPPLTBUTNBMMGSBDUJPOPGSBOEPNHSBQIT 8 1/polylog(n) We want hardness of

    “almost all” random graphs w 0WFSDPNFUIJTJTTVFCZIBSEOFTTBNQMJ DBUJPO Theorem Under (randomized) ETH, any -time algorithm for has success prob. for any constant . no(a) (#Ka , G(n, p)) ≤ 1 − 1/polylog(n) p [Boix-Adserà, Brennan, Bresler, 2019]
  8. /27 )BSEOFTT"NQMJ DBUJPO w #BTFEPOBNJMEMZIBSEQSPCMFN DPOTUSVDUBTUSPOHMZIBSE QSPCMFN (Π, 𝒟 )

    (Π′  , 𝒟 ′  ) 9 (Π, 𝒟 ) (Π′  , 𝒟 ′  ) [Yao, 1982] w "QQMJDBUJPOJODSZQUPHSBQIZBOEEFSBOEPNJ[BUJPO w 8FMMTUVEJFEJODPBSTFHSBJOFEDPNQMFYJUZ
  9. /27 %JSFDU1SPEVDU w %JSFDU1SPEVDUCBTJDUFDIOJRVFPGIBSEOFTTBNQMJ DBUJPO 10 For and , let

    a s ɾ , ɾ is a sequence of distributions, where each is the distribution of i.i.d. samples from . (Π, 𝒟 ) k ∈ ℕ (Π, 𝒟 )k := (Πk, 𝒟 k) Πk(x1 , …, xk ) = (Π(x1 ), …, Π(xk )) 𝒟 k = ( 𝒟 k n )n∈ℕ 𝒟 k n k 𝒟 n [Yao, 1982] ˠ*G JTIBSE UIFO JTIBSE*OEFFE UIFDPOWFSTFIPMET (Π, 𝒟 )k (Π, 𝒟 ) (Direct Product Theorem) [Yao, 1982] w *G DBOCFTPMWFEXJUITVDDFTTQSPC UIFO DBOCFTPMWFE XJUITVDDFTTQSPC XJUIBPWFSIFBEPGGBDUPS  (Π, 𝒟 ) δ (Πk, 𝒟 k) δk k De fi nition (Direct Product of ) (Π, 𝒟 )
  10. Input: graph . Output: # of -subgraphs in #Ka,b G

    Ka,b G a b • -Detection Ka,b • NP-complete (a and b are given as input ) • W[1]-hard (parameteriszed by ) • -Detection requires time under ET H • time algo a = b Ka,a nΩ( a) O*(1.6914n) [Garey, Johnson 1979] [Lin, 2015] [Binkele-Raible, Fernau, Gaspers, Liedloff, 2010] • #Ka,b • tim e • on bipartite grap h • time O*(1.6107) O*(1.4423n) O(1.2491n) [Kutzkov, 2012] [Gaspers, Kratsch, Liedloff 2012] [Couturier, Kratsch 2012] • enumerate Ka,b pattern mining [Agrawal, Srikant, 1994] bioinformatics [Driskell, Ané, Burleigh, McMahon, Sanderson, 2004] • small : time, or time if a O(na+1) O(nω) a = 2 12 /27 [Lin, 2015]
  11. /27 Theorem Theorem 3FTVMU 13 Under (randomized) SETH, for any

    and , there exists such tha any time algorithm for has a success prob. . a ≥ 3 ϵ > 0 b O(na−ϵ) (#Ka,b , 𝒦 a,b,n ) ≤ 1 − 1/polylog(n) For any and , can be solved in time . a ≥ 8 b ∈ ℕ #Ka,b bna+o(1)
  12. /27 Theorem Theorem Under (randomized) SETH, for any and ,

    there exists such tha any time algorithm for has a success prob. . a ≥ 3 ϵ > 0 b O(na−ϵ) (#Ka,b , 𝒦 a,b,n ) ≤ 1 − 1/polylog(n) For any and , can be solved in time . a ≥ 8 b ∈ ℕ #Ka,b bna+o(1) 3FTVMU 14 WFSU 𝒦 a,b,n vertices α vertices β : distribution of a random bipartite graph w.p. 1/2 Let α ∼ Unif(1,…, a), β ∼ Unif(1,…, b)
  13. /27 Theorem (Fine-Grained Hardness Ampli cation) 3FTVMU Under SETH, for

    any and , there are and such tha any time algorithm for has success prob. . a ≥ 3 ϵ > 0 b ∈ ℕ k = polylog(n) O(na−ϵ) (#Ka,b , 𝒦 a,b,n )k ≤ n−O(ϵ) ɾ#ZDPNCJOJOH(PMESFJDI-FWJOUFDIOJRVF 15 1/polylog(n) 1 − n−ϵ Result 1 Result 2 [Goldreich, Levin, 1989] we amplify the hardness of computing parity , which corresponds to #Ka,b Yao’s XOR lemma [Yao, 1982], [Levin, 1987]
  14. /27 3FMBUFE8PSL ɾ , requires under ET - is the

    distribution of “arti fi cial” random graphs ɾ requires time under ET - Issue in success probability: ɾWorst-case to average-case reduction for (H is a general graph - Issue in success probability: ∃ 𝒟 (#Ka , 𝒟 ) nΩ(a) 𝒟 (#Ka , G(n, p)) nΩ(k) 1 − 1/polylog(n) #H 1 − 1/polylog(n) 16 [Goldreich Rothblum, 2018] [Boix-Adserà, Brennan, Bresler, 2019] [Dalirrooyfard, Lincoln, Williams, 2020]
  15. /27 Theorem (Reminder) )BSEOFTT"NQMJ DBUJPO Under SETH, for any and

    , there are and such tha any time algorithm for has success prob. . a ≥ 3 ϵ > 0 b ∈ ℕ k = polylog(n) O(na−ϵ) (#Ka,b , 𝒦 a,b,n )k ≤ n−O(ϵ) ɾ8FDPNCJOFUIFEJSFDUQSPEVDUUIFPSFNPG 18 1/polylog(n) 1 − n−ϵ Result 1 Result 2 [Impagliazzo, Jaiswal, Kabanets, Wigderson, 2010] XJUIPVSOFXJOUFSBDUJWFQSPPGTZTUFNXJUIMPXRVFSZDPNQMFYJUZ
  16. /27 Theorem (Informal; Impagliazzo et al. 2010) %JSFDU1SPEVDU5IFPSFN Let be

    a -time algorithm that solves with success probability Then, there is a list of algorithms such tha ɾFor some , solves with success probability ɾEach runs in time . A T(n) (Π, 𝒟 )k ≈ δk (M1 , …, Mm ) i ∈ [m] MA i (Π, 𝒟 ) ≈ δ MA j ≈ T(n) w 8FBQQMZ%15PG[Impagliazzo, Jaiswal, Kabanets, Wigderson, 2010] Here, , and the list can be computed in time . m = O((1/δ)k) T(n) (each algorithm is represented as an oracle circuit) 19
  17. /27 0VS4FUUJOH#Ka,b w MJTUPGPSBDMFBMHPSJUINTTVDIUIBU ∃M1 , …, Mm 8IJDI TPMWFT

     Mi (#Ka,b , 𝒦 a,b,n ) ɾFor some , solves with success prob ɾEach runs in time ɾ i MA i (#Ka,b , 𝒦 a,b,n ) ≥ 1 − n−ϵ Mj ≈ na−ϵ m = poly log n w 5PJEFOUJGZ XFDPOTUSVDUBOJOUFSBDUJWFQSPPGTZTUFN Mi 20 w BMHPSJUINGPS XJUITVDDFTTQSPC  A (#Ka,b , 𝒦 a,b,n )polylogn n−ϵ BOETJNVMBUFJUVTJOHFBDI BTBQSPWFS Mj We want to solve in time . #Ka,b na−ϵ+o(1)
  18. /27 Theorem (IP for ) #Ka,b *1XJUIMPXRVFSZDPNQMFYJUZ There is an

    -round IP for such that 1. Veri fi er runs in time . 2. Veri fi er makes at most queries 3. Each query is of the form “ 4. If Prover solves correctly, Veri fi er accepts w.p. 1 5. Otherwise, Veri fi er rejects w.p. . O(log n) #Ka,b n2poly log n poly log n #Ka,b (G) = ? #Ka,b ≥ 2/3 21 w (PMESFJDIBOE3PUICMVNDPOTUSVDUFEBO*1GPS XJUIRVFSZDPNQMFYJUZ  #Ka Θ(n) [Goldreich and Rothblum, 2018] w #BTFEPOTVNDIFDLQSPUPDPMGPSQFSNBOFOUPG [Lund, Fortnow, Karloff, Nisan, 1990] w 8FDPOTUSVDU*1GPS$PMPSFE  H
  19. /27 *EFOUJ fi DBUJPOVTJOH*1 w MJTUPGBMHPSJUINTTVDIUIBU ∃M1 , …, Mm

    w 8IJDI TPMWFT  Mi (#Ka,b , 𝒦 a,b,n ) ɾFor some , solves with success prob ɾEach runs in time ɾ i Mi (#Ka,b , 𝒦 a,b,n ) ≥ 1 − n−ϵ Mj ≈ na−ϵ m = poly log n w *EFB3VO*1VTJOHFBDI BT1SPWFS Mj 22
  20. /27 *EFOUJ fi DBUJPOVTJOH*1 w -FU CFUIFJOQVUPG  G #Ka,b

    w 3VO*1VTJOH BT1SPWFS Mj Prover Veri fi er ? #Ka,b (Gj ) = G1 #Ka,b (G1 ) /PUFUIBU JTSFEVDJCMFUP  5IFSFGPSF XFDBOJNQMFNFOU1SPWFSVTJOH #Ka,b (#Ka,b , 𝒦 a,b,n ) Mj w *G7FSJ fi FSBDDFQUTGPS1SPWFS UIFO JTUIFSJHIUBMHPSJUIN Mi Mi 23
  21. /27 3VOOJOH5JNF w &BDI SVOTJOUJNF  Mj O(na−ϵ) w 7FSJ

    fi FSNBLFT RVFSJFT poly log n w 3VO*1GPS UJNFT m = polylogn w 5PUBMSVOOJOHUJNFna−ϵpolylogn 24 Prover Veri fi er G1 #Ka,b (G1 )
  22. /27 3VOOJOH5JNF w &BDI SVOTJOUJNF  Mj O(na−ϵ) w 3VO*1GPS

    UJNFT m = polylogn w 5PUBMSVOOJOHUJNFna−ϵpolylogn 25 Prover Veri fi er ? #Ka,b (Gj ) = G1 #Ka,b (G1 ) w 7FSJ fi FSNBLFT RVFSJFT poly log n *G7FSJ fi FSNBLFT RVFSJFT UIFO UPUBMSVOOJOHUJNF n na+1−ϵpoly log n
  23. /27 $PODMVTJPO 26 w lTIBSQUISFTIPMESFTVMUz w )BSEOFTTBNQMJ fi DBUJPOJO fi

    OFHSBJOFEDPNQMFYJUZ -time algo ∃ na+o(1) -time algo ∀ na−ϵ hardness ampli fi cation for -time algorithms na−ϵ ɾContributes to fi ne-grained average-case complexity [Ball, Rosen, Sabin, Vasudevan, 2017]