$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
FlexiBO: A Decoupled Cost-Aware Multi-Objective...
Search
Pooyan Jamshidi
February 29, 2024
Science
0
160
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
AAAI 2024
Pooyan Jamshidi
February 29, 2024
Tweet
Share
More Decks by Pooyan Jamshidi
See All by Pooyan Jamshidi
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
190
Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems
pjamshidi
0
210
Learning from Valerie Issarny: Insights Gained from Program Co-Chairing SEAMS’23
pjamshidi
0
380
Artificial Intelligence and Systems Laboratory (AISys): A Research Overview
pjamshidi
0
740
Experiential Learning by Building Real-World AI Systems
pjamshidi
0
230
Understanding and Explaining the Root Causes of Performance Faults with Causal AI: A Path towards Building Dependable Computer Systems
pjamshidi
0
190
On Debugging the Performance of Configurable Software Systems: Developer Needs and Tailored Tool Support
pjamshidi
0
280
Unicorn: Reasoning about Configurable System Performance through the Lens of Causality
pjamshidi
0
470
Causal AI for Systems
pjamshidi
0
330
Other Decks in Science
See All in Science
凸最適化からDC最適化まで
santana_hammer
1
340
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
100
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
170
NDCG is NOT All I Need
statditto
2
2.6k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
210
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
210
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
170
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
あなたに水耕栽培を愛していないとは言わせない
mutsumix
1
140
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
900
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
270
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
[SF Ruby Conf 2025] Rails X
palkan
0
510
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Embracing the Ebb and Flow
colly
88
4.9k
Side Projects
sachag
455
43k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Music & Morning Musume
bryan
46
7k
Transcript
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
Shahriar Iqbal, Jianhai Su, Lars Kotthoff, Pooyan Jamshidi
[email protected]
AAAI, 24 February 2024 1
One Size Does Not Fit All 1 1.5 2 2.5
3 3.5 ·104 15 20 25 30 35 40 Energy Consumption (mJ) Prediction Error (%) Xception ← Energy consumption varies 4 × → ← Prediction Error varies 3 × → 2
Heterogeneous Parameters Num of Filters, Filter Size, Learning Rate, Num
of Epochs DN N Design Compiler Hardware Deployment Num of Active CPUs, CPU/ GPU/ EMC Frequency Cloud, IoT, Edge Num of Threads, GPU Threads, Memory Growth 3
Cost-Unaware Methods Waste Resources Coupled Unaware Pareto Optimal Prediction Error
(%) Log Wall Clock Time Energy Consumption (mJ) 3000 6000 9000 12000 15 25 35 45 3.65 3.50 3.35 Decoupled Aware Pareto Optimal Prediction Error (%) Log Wall Clock Time Energy Consumption (mJ) 3000 6000 9000 12000 15 25 35 45 3.65 3.50 3.35 4
Proposed Method ▷ weight expected benefit of evaluation by cost
▷ choose which objective(s) to evaluate ▷ more efficient use of resources – lower cost, more evaluations 5
Results – Computer Vision 0 50 100 150 200 Cumulative
Log WallClock Time 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error Xception PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 10000 15000 20000 25000 Energy Consumption (mJ) 15 20 25 30 35 40 Prediction Error (%) Xception PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 6
Results – NLP 0 50 100 150 200 Cumulative Log
WallClock Time 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error BERT-SQuAD PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 70000 80000 90000 Energy Consumption (mJ) 20 25 30 35 Prediction Error (%) BERT-SQuAD PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 7
Results – Speech Recognition 0 50 100 150 200 250
300 Cumulative Log WallClock Time 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 Energy Consumption (mJ) 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 Prediction Error (%) DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 8
Results – Evaluations 0 20 40 60 80 100 120
140 160 180 200 PAL 0 20 40 60 80 100 120 140 160 180 200 PESMO-DEC 2 4 6 8 0 20 40 60 80 100 120 140 160 180 200 Iteration CA-MOBO 0 20 40 60 80 100 120 140 160 180 200 Iteration FlexiBO 2 4 6 8 9
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
▷ cost-aware acquisition function decreases cost and improves results ▷ code available at https://github.com/softsys4ai/FlexiBO 0 50 100 150 200 250 300 Cumulative Log WallClock Time 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 Energy Consumption (mJ) 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 Prediction Error (%) DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 10