Upgrade to Pro — share decks privately, control downloads, hide ads and more …

anisotropy-layered-materials

Prashun Gorai
December 03, 2019

 anisotropy-layered-materials

"High-throughput Prediction of Anisotropic Transport Properties" presented at the Materials Research Society Fall 2019 in the EN14 symposium on thermoelectric materials.

Prashun Gorai

December 03, 2019
Tweet

More Decks by Prashun Gorai

Other Decks in Research

Transcript

  1. Prashun Gorai, Robert McKinney High-Throughput Prediction of Anisotropic Transport Properties

    Colorado School of Mines National Renewable Energy Lab Golden, USA Eric Toberer, Vladan Stevanović
  2. Anisotropic Transport in Thermoelectric Materials /10 2 ๏ Quasi-low dimensional

    structures are abundant among TE materials ๏ Transport can be anisotropic ๏ Lattice thermal conductivity in well- known TE materials is anisotropic ๏ Example: SnSe, BiCuOSe ๏ High-throughput searches require prediction of L A semi-empirical model to rapidly predict the anisotropic L CsBi4Te6 BiCuSeO InSe Sr3GaSb3 Bi2Te3 SnSe Sb2Te3 CaZn2Sb2 Ca3AlSb3 Quasi Low-dimensional Materials zT max 0 1 2 3 Lattice Therm. Conduc (Wm-1K-1) 1 10 1Gorai, Toberer, Stevanovic, J. Mater. Chem. A 4, 11110 (2016)
  3. Isotropic Model for Predicting L /10 3 Miller, Gorai, Stevanovic,

    Toberer et al., Chem. Mater. 29, 2494 (2017) GaAs InI Cu3 TaTe4 SrTiO3 GaP Si SiC d-C PbTe factor of 2 Mg2 Si Modeled κL (Wm-1K-1) 0.1 1 10 100 1000 Experimental κL (Wm-1K-1) 0.1 1 10 100 1000 ๏ Isotropic speed of sound ๏ B: bulk modulus, d: density ๏ V: volume, n: number of atoms ๏ M: average atomic mass ๏ A1, A2, x, y, z: fitting parameters vs (B/d) <latexit sha1_base64="AVfgBYT3wOQkrLTvgUZJNrQLVwk=">AAAClXicbVHbattAEF2rtzS9xEke+tCXpSbgQHClUmheAiENTR8KTWmdGCxjRquRvXi1q+yOgo3wF+Rr+tp+Sf+mK8eF2OnAwuGcuezMSQolHYXhn0bw4OGjx082nm4+e/7i5VZze+fCmdIK7AqjjO0l4FBJjV2SpLBXWIQ8UXiZTD7W+uU1WieN/kGzAgc5jLTMpADy1LC5dz10PIaisGbKY3dlqYoVZtTmJ29THls5GtP+fNhshZ1wEfw+iJagxZZxPtxu9OLUiDJHTUKBc/0oLGhQgSUpFM4349JhAWICI+x7qCFHN6gW+8z5nmdSnhnrnya+YO9WVJA7N8sTn5kDjd26VpP/0/olZYeDSuqiJNTidlBWKk6G18fhqbQoSM08AGGl/ysXY7AgyJ9wZcqid4FiZZNqWmopTIprrKIpWfCkQ8pB6nqr6kwqxb+Ddv9437AW2qdyJMkdfPEO6YMzizjZv5PMvRfR+uXvg4t3nSjsRN/et45Plq5ssNfsDWuziH1gx+wzO2ddJtgN+8l+sd/Bq+AoOA0+3aYGjWXNLluJ4OtfJbHNBw==</latexit> <latexit sha1_base64="AVfgBYT3wOQkrLTvgUZJNrQLVwk=">AAAClXicbVHbattAEF2rtzS9xEke+tCXpSbgQHClUmheAiENTR8KTWmdGCxjRquRvXi1q+yOgo3wF+Rr+tp+Sf+mK8eF2OnAwuGcuezMSQolHYXhn0bw4OGjx082nm4+e/7i5VZze+fCmdIK7AqjjO0l4FBJjV2SpLBXWIQ8UXiZTD7W+uU1WieN/kGzAgc5jLTMpADy1LC5dz10PIaisGbKY3dlqYoVZtTmJ29THls5GtP+fNhshZ1wEfw+iJagxZZxPtxu9OLUiDJHTUKBc/0oLGhQgSUpFM4349JhAWICI+x7qCFHN6gW+8z5nmdSnhnrnya+YO9WVJA7N8sTn5kDjd26VpP/0/olZYeDSuqiJNTidlBWKk6G18fhqbQoSM08AGGl/ysXY7AgyJ9wZcqid4FiZZNqWmopTIprrKIpWfCkQ8pB6nqr6kwqxb+Ddv9437AW2qdyJMkdfPEO6YMzizjZv5PMvRfR+uXvg4t3nSjsRN/et45Plq5ssNfsDWuziH1gx+wzO2ddJtgN+8l+sd/Bq+AoOA0+3aYGjWXNLluJ4OtfJbHNBw==</latexit> <latexit sha1_base64="AVfgBYT3wOQkrLTvgUZJNrQLVwk=">AAAClXicbVHbattAEF2rtzS9xEke+tCXpSbgQHClUmheAiENTR8KTWmdGCxjRquRvXi1q+yOgo3wF+Rr+tp+Sf+mK8eF2OnAwuGcuezMSQolHYXhn0bw4OGjx082nm4+e/7i5VZze+fCmdIK7AqjjO0l4FBJjV2SpLBXWIQ8UXiZTD7W+uU1WieN/kGzAgc5jLTMpADy1LC5dz10PIaisGbKY3dlqYoVZtTmJ29THls5GtP+fNhshZ1wEfw+iJagxZZxPtxu9OLUiDJHTUKBc/0oLGhQgSUpFM4349JhAWICI+x7qCFHN6gW+8z5nmdSnhnrnya+YO9WVJA7N8sTn5kDjd26VpP/0/olZYeDSuqiJNTidlBWKk6G18fhqbQoSM08AGGl/ysXY7AgyJ9wZcqid4FiZZNqWmopTIprrKIpWfCkQ8pB6nqr6kwqxb+Ddv9437AW2qdyJMkdfPEO6YMzizjZv5PMvRfR+uXvg4t3nSjsRN/et45Plq5ssNfsDWuziH1gx+wzO2ddJtgN+8l+sd/Bq+AoOA0+3aYGjWXNLluJ4OtfJbHNBw==</latexit> <latexit sha1_base64="AVfgBYT3wOQkrLTvgUZJNrQLVwk=">AAAClXicbVHbattAEF2rtzS9xEke+tCXpSbgQHClUmheAiENTR8KTWmdGCxjRquRvXi1q+yOgo3wF+Rr+tp+Sf+mK8eF2OnAwuGcuezMSQolHYXhn0bw4OGjx082nm4+e/7i5VZze+fCmdIK7AqjjO0l4FBJjV2SpLBXWIQ8UXiZTD7W+uU1WieN/kGzAgc5jLTMpADy1LC5dz10PIaisGbKY3dlqYoVZtTmJ29THls5GtP+fNhshZ1wEfw+iJagxZZxPtxu9OLUiDJHTUKBc/0oLGhQgSUpFM4349JhAWICI+x7qCFHN6gW+8z5nmdSnhnrnya+YO9WVJA7N8sTn5kDjd26VpP/0/olZYeDSuqiJNTidlBWKk6G18fhqbQoSM08AGGl/ysXY7AgyJ9wZcqid4FiZZNqWmopTIprrKIpWfCkQ8pB6nqr6kwqxb+Ddv9437AW2qdyJMkdfPEO6YMzizjZv5PMvRfR+uXvg4t3nSjsRN/et45Plq5ssNfsDWuziH1gx+wzO2ddJtgN+8l+sd/Bq+AoOA0+3aYGjWXNLluJ4OtfJbHNBw==</latexit> Modeled L within average factor difference ~1.5 of experimental value L = A1 ¯ Mvy s nxVz 2T + A2 vs Vz 1 1 n2/3 <latexit sha1_base64="GDTL4DU9W0YmdP6vcLg1NT14KD8=">AAAC3nicbVFNbxMxEHW2BUr5SsuRi0WElIoSsimoXJDKh1QORSqiSSNlk2XW8SZWvN6VPVslWHvlhrjyw7jwVzjhTRepSRnJ0tN7b2Y8M1EmhcF2+3fN29i8cfPW1u3tO3fv3X9Q39ntmTTXjHdZKlPdj8BwKRTvokDJ+5nmkESSn0ezd6V+fsG1Eak6w0XGhwlMlIgFA3RUWFfBDLIMwhP6mr4JfRrEGpgNItD2Y3ERmtGisGo0742+BhNIEhh1zgr61Fk7ldV5CuvkIpA8xialPn1WSX6ZajvPD4qCBlpMprgX1hvtVnsZ9DrwK9AgVZyGO7V+ME5ZnnCFTIIxA7+d4dCCRsEkL7aD3PAM2AwmfOCggoSboV0upqBPHDOmcardU0iX7NUMC4kxiyRyzgRwata1kvyfNsgxfjW0QmU5csUuG8W5pJjScst0LDRnKBcOANPC/ZWyKbiloLvFSpdl7YyzlUnsPFeCpWO+xkqcowZHGo4JCFVOZY+FlPQzKPOPdwVLofleTASa/RN3arV/rDmf7V0xU3cLf33z10Gv0/IPWi8/vWgcva2uskUekcekSXxySI7IB3JKuoSRX+RPbaO26X3xvnnfvR+XVq9W5TwkK+H9/AtTVed3</latexit>
  4. Anisotropic Model for Predicting L /10 4 ๏ Direction-dependent speed

    of sound (vi) from elastic tensor and density using Christoffel equations ๏ L, T1, T2: longitudinal, transverse modes ๏ V: volume, n: number of atoms, M: average atomic mass ๏ A1, A2, x, y, z: fitting parameters Bi2Te3: speed of sound (km/s) 1.2 3.6 2.6 L T1 T2 Anisotropic model used to estimate L along principal axes L = A1 ¯ M nxVz 2T L,T1,T2 vy i + A2 1 Vz L,T1,T2 vi 1 1 n2/3 <latexit sha1_base64="pFDSYG62ReRhO6xVs4qmeYGWz8Y=">AAAC/3icbVLLbhMxFPUMr1JeKSy7sQiVUhHSmRQEG6TykMoiSEUkaaRMMrrjeBIrtmdke6oEaxZ8AZ/BDrHlU/gQ9jhpEE3aK1k6Ovece+17neScaRMEvz3/2vUbN29t3d6+c/fe/QeVnYddnRWK0A7JeKZ6CWjKmaQdwwynvVxREAmnp8n03SJ/ekaVZplsm3lOBwLGkqWMgHFUXPkWTSHPIW7h1/hNHOIoVUBslICyH8vSyuGsO/wSjUEIGDbbZaQLEdtWvR3W283SnsVsOC/xU2dtrqxhaZ3jCmEZcZqaGsYhfvZfK4e2eXBYljhSbDwx+3GlGjSCZeDLIFyBKlrFSbzj9aJRRgpBpSEctO6HQW4GFpRhhNNyOyo0zYFMYUz7DkoQVA/scnIl3nPMCKeZckcavGQvOiwIrecicUoBZqI3cwvyqly/MOmrgWUyLwyV5LxRWnBsMrxYAx4xRYnhcweAKObuiskE3FCMW9Zal2XtnJK1l9hZIRnJRnSD5WZmFDhSUyOAycWr7DHjHH8Gqf/xruAiUXvPxszoesv9BVk/VpRO9y+IsdtFuDn5y6DbbISHjRefnleP3q62soV20WNUQyF6iY7QB3SCOoigP96u98Tb87/63/0f/s9zqe+tPI/QWvi//gJdd/M9</latexit> L = A1 ¯ Mvy s nxVz 2T + A2 vs Vz 1 1 n2/3 <latexit sha1_base64="GDTL4DU9W0YmdP6vcLg1NT14KD8=">AAAC3nicbVFNbxMxEHW2BUr5SsuRi0WElIoSsimoXJDKh1QORSqiSSNlk2XW8SZWvN6VPVslWHvlhrjyw7jwVzjhTRepSRnJ0tN7b2Y8M1EmhcF2+3fN29i8cfPW1u3tO3fv3X9Q39ntmTTXjHdZKlPdj8BwKRTvokDJ+5nmkESSn0ezd6V+fsG1Eak6w0XGhwlMlIgFA3RUWFfBDLIMwhP6mr4JfRrEGpgNItD2Y3ERmtGisGo0742+BhNIEhh1zgr61Fk7ldV5CuvkIpA8xialPn1WSX6ZajvPD4qCBlpMprgX1hvtVnsZ9DrwK9AgVZyGO7V+ME5ZnnCFTIIxA7+d4dCCRsEkL7aD3PAM2AwmfOCggoSboV0upqBPHDOmcardU0iX7NUMC4kxiyRyzgRwata1kvyfNsgxfjW0QmU5csUuG8W5pJjScst0LDRnKBcOANPC/ZWyKbiloLvFSpdl7YyzlUnsPFeCpWO+xkqcowZHGo4JCFVOZY+FlPQzKPOPdwVLofleTASa/RN3arV/rDmf7V0xU3cLf33z10Gv0/IPWi8/vWgcva2uskUekcekSXxySI7IB3JKuoSRX+RPbaO26X3xvnnfvR+XVq9W5TwkK+H9/AtTVed3</latexit>
  5. Prediction of Anisotropic L /10 5 McKinney, Gorai, Toberer, Stevanovic,

    Chem. Mater. 6, 2048 (2019) ZnO SnO2 WS2 Si3 N4 MoS2 graphite-C GaS Bi2 Te3 InSe ZnSb GaSe AlN TlSe diam-C modeled κL (W/mK) 1 101 102 103 104 experimental κL (W/mK) 1 101 102 103 104 ๏ Symmetry-appropriate L tensors created from principal values ๏ Fitting parameters (A1, x, y, z) - same as isotropic model (no refit) ๏ Model predictions compared with experimental anisotropic L Modeled L within average factor difference ~1.5 of experimental values!
  6. Anisotropic L of Thermoelectric Materials /10 6 L,min L,max [L,min,

    L,max] (W/mK) PbTe [4.7, 4.7] Bi2Te3 [1.5, 2.8] SnSe [2.0, 5.3] Mg3Sb2 [2.3, 2.4]
  7. Application of the Model to Layered Materials /10 7 1Gorai,

    Toberer, Stevanovic, J. Mater. Chem. A 4, 11110 (2016) ๏ Automated identification of layered materials in ICSD with a surface- cutting approach1 ๏ Considered van der Waals (vdW) and ionic layered materials 354 binary vdW, 413 ternary vdW, 1852 ternary ionic layered materials SnSe CuGeO3 RbAg3Te2
  8. κL,max (W/mK) 1 101 102 103 κL,min (W/mK) 1 101

    102 binary vdw ternary vdw ionic max/min ≤ 2 Anisotropic L of 2500+ Layered Materials /10 8 κL,max (W/mK) 1 101 102 103 κL,min (W/mK) 1 101 102 ionic McKinney et al., Chem. Mater. 6, 2048 (2019) “Layered” materials can also exhibit nearly isotropic L
  9. Examples: Highly Anisotropic to Nearly Isotropic /10 9 L,min L,max

    MoS2 [2.6, 43.4] CuGeO3 [0.6, 0.7] TaOI2 [0.5, 150.3] RbAg3Te2 “Layered” materials exhibit all sorts of L anisotropies [L,min, L,max] (W/mK) [3.1, 82.5]
  10. 1-2-2 Phases: Are They Really “Layered”? /11 10 Mg3Sb2 [2.3,

    2.4] L,min L,max [L,min, L,max] (W/mK) *Zhang, Iversen et al., Nature Comm. 9 (2018) ๏ Mg3Sb2: consider Zintl phase due to its “layered” structure ๏ Recent experiments shows it cannot be considered layered* ๏ We find nearly isotropic L CaZn2Sb2 [2.2, 3.3] ๏ CaZn2Sb2: more anisotropic than Mg3Sb2 ๏ Can be considered “layered” and therefore, Zintl phase
  11. Conclusion and Future Directions National Science Foundation - DMREF Program

    NREL High Performance Computing (HPC) [email protected] ๏ Developed a computationally-tractable model to predict anisotropic L ๏ Unexpected anisotropy in the transport properties of layered materials ๏ Ongoing work to predict direction-dependent carrier mobility, TE performance