Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Jake Vanderplas - Statistics for Hackers

Jake Vanderplas - Statistics for Hackers

Statistics has the reputation of being difficult to understand, but using some simple Python skills it can be made much more intuitive. This talk will cover several sampling-based approaches to solving statistical problems, and show you that if you can write a for-loop, you can do statistics.

https://us.pycon.org/2016/schedule/presentation/1576/

PyCon 2016

May 29, 2016
Tweet

More Decks by PyCon 2016

Other Decks in Programming

Transcript

  1. < About Me > - Astronomer by training - Statistician

    by accident - Active in Python science & open source - Data Scientist at UW eScience Institute - @jakevdp on Twitter & Github
  2. Hacker (n.) 1. A person who is trying to steal

    your grandma’s bank password.
  3. Hacker (n.) 1. A person who is trying to steal

    your grandma’s bank password. 2. A person whose natural approach to problem-solving involves writing code.
  4. You toss a coin 30 times and see 22 heads.

    Is it a fair coin? Warm-up: Coin Toss
  5. A fair coin should show 15 heads in 30 tosses.

    This coin is biased. Even a fair coin could show 22 heads in 30 tosses. It might be just chance.
  6. Classic Method: Assume the Skeptic is correct: test the Null

    Hypothesis. What is the probability of a fair coin showing 22 heads simply by chance?
  7. Classic Method: 0.8 % Probability of 0.8% (i.e. p =

    0.008) of observations given a fair coin. → reject fair coin hypothesis at p < 0.05
  8. Easier Method: Just simulate it! M = 0 for i

    in range(10000): trials = randint(2, size=30) if (trials.sum() >= 22): M += 1 p = M / 10000 # 0.008149 → reject fair coin at p = 0.008
  9. In general . . . Computing the Sampling Distribution is

    Hard. Simulating the Sampling Distribution is Easy.
  10. Now, the Star-Belly Sneetches had bellies with stars. The Plain-Belly

    Sneetches had none upon thars . . . Sneeches: Stars and Intelligence *inspired by John Rauser’s Statistics Without All The Agonizing Pain
  11. ★ ❌ 84 72 81 69 57 46 74 61

    63 76 56 87 99 91 69 65 66 44 62 69 ★ mean: 73.5 ❌ mean: 66.9 difference: 6.6 Sneeches: Stars and Intelligence Test Scores
  12. ★ mean: 73.5 ❌ mean: 66.9 difference: 6.6 Is this

    difference of 6.6 statistically significant?
  13. Classic Method (Student’s t distribution) Degree of Freedom: “The number

    of independent ways by which a dynamic system can move, without violating any constraint imposed on it.” -Wikipedia
  14. Degree of Freedom: “The number of independent ways by which

    a dynamic system can move, without violating any constraint imposed on it.” -Wikipedia Classic Method (Student’s t distribution)
  15. < One popular alternative . . . > “Why don’t

    you just . . .” from statsmodels.stats.weightstats import ttest_ind t, p, dof = ttest_ind(group1, group2, alternative='larger', usevar='unequal') print(p) # 0.186
  16. < One popular alternative . . . > “Why don’t

    you just . . .” from statsmodels.stats.weightstats import ttest_ind t, p, dof = ttest_ind(group1, group2, alternative='larger', usevar='unequal') print(p) # 0.186 . . . But what question is this answering?
  17. ★ ❌ 84 72 81 69 57 46 74 61

    63 76 56 87 99 91 69 65 66 44 62 69 Idea: Simulate the distribution by shuffling the labels repeatedly and computing the desired statistic. Motivation: if the labels really don’t matter, then switching them shouldn’t change the result!
  18. ★ ❌ 84 72 81 69 57 46 74 61

    63 76 56 87 99 91 69 65 66 44 62 69 1. Shuffle Labels 2. Rearrange 3. Compute means
  19. ★ ❌ 84 72 81 69 57 46 74 61

    63 76 56 87 99 91 69 65 66 44 62 69 1. Shuffle Labels 2. Rearrange 3. Compute means
  20. ★ ❌ 84 81 72 69 61 69 74 57

    65 76 56 87 99 44 46 63 66 91 62 69 1. Shuffle Labels 2. Rearrange 3. Compute means
  21. ★ ❌ 84 81 72 69 61 69 74 57

    65 76 56 87 99 44 46 63 66 91 62 69 ★ mean: 72.4 ❌ mean: 67.6 difference: 4.8 1. Shuffle Labels 2. Rearrange 3. Compute means
  22. ★ ❌ 84 81 72 69 61 69 74 57

    65 76 56 87 99 44 46 63 66 91 62 69 ★ mean: 72.4 ❌ mean: 67.6 difference: 4.8 1. Shuffle Labels 2. Rearrange 3. Compute means
  23. ★ ❌ 84 81 72 69 61 69 74 57

    65 76 56 87 99 44 46 63 66 91 62 69 1. Shuffle Labels 2. Rearrange 3. Compute means
  24. ★ ❌ 84 56 72 69 61 63 74 57

    65 66 81 87 62 44 46 69 76 91 99 69 ★ mean: 62.6 ❌ mean: 74.1 difference: -11.6 1. Shuffle Labels 2. Rearrange 3. Compute means
  25. ★ ❌ 84 56 72 69 61 63 74 57

    65 66 81 87 62 44 46 69 76 91 99 69 1. Shuffle Labels 2. Rearrange 3. Compute means
  26. ★ ❌ 74 56 72 69 61 63 84 57

    87 76 81 65 91 99 46 69 66 62 44 69 ★ mean: 75.9 ❌ mean: 65.3 difference: 10.6 1. Shuffle Labels 2. Rearrange 3. Compute means
  27. ★ ❌ 84 56 72 69 61 63 74 57

    65 66 81 87 62 44 46 69 76 91 99 69 1. Shuffle Labels 2. Rearrange 3. Compute means
  28. ★ ❌ 84 81 69 69 61 69 87 74

    65 76 56 57 99 44 46 63 66 91 62 72 1. Shuffle Labels 2. Rearrange 3. Compute means
  29. 1. Shuffle Labels 2. Rearrange 3. Compute means ★ ❌

    74 62 72 57 61 63 84 69 87 81 76 65 91 99 46 69 66 56 44 69
  30. 1. Shuffle Labels 2. Rearrange 3. Compute means ★ ❌

    84 81 72 69 61 69 74 57 65 76 56 87 99 44 46 63 66 91 62 69
  31. “A difference of 6.6 is not significant at p =

    0.05.” That day, all the Sneetches forgot about stars And whether they had one, or not, upon thars.
  32. Notes on Shuffling: - Works when the Null Hypothesis assumes

    two groups are equivalent - Like all methods, it will only work if your samples are representative – always be careful about selection biases! - Needs care for non-independent trials. Good discussion in Simon’s Resampling: The New Statistics
  33. How High can Yertle stack his turtles? - What is

    the mean of the number of turtles in Yertle’s stack? - What is the uncertainty on this estimate? 48 24 32 61 51 12 32 18 19 24 21 41 29 21 25 23 42 18 23 13 Observe 20 of Yertle’s turtle towers . . . # of turtles
  34. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution.
  35. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution.
  36. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21
  37. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19
  38. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25
  39. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24
  40. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23
  41. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19
  42. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41
  43. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23
  44. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41
  45. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41 18
  46. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41 18 61
  47. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41 18 61 12
  48. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41 18 61 12 42
  49. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41 18 61 12 42 42
  50. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41 18 61 12 42 42 42
  51. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41 18 61 12 42 42 42 19
  52. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41 18 61 12 42 42 42 19 18
  53. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41 18 61 12 42 42 42 19 18 61
  54. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41 18 61 12 42 42 42 19 18 61 29
  55. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41 18 61 12 42 42 42 19 18 61 29 41
  56. Bootstrap Resampling: 48 24 51 12 21 41 25 23

    32 61 19 24 29 21 23 13 32 18 42 18 Idea: Simulate the distribution by drawing samples with replacement. Motivation: The data estimates its own distribution – we draw random samples from this distribution. 21 19 25 24 23 19 41 23 41 18 61 12 42 42 42 19 18 61 29 41 → 31.05
  57. for i in range(10000): sample = N[randint(20, size=20)] xbar[i] =

    mean(sample) mean(xbar), std(xbar) # (28.9, 2.9) Recovers The Analytic Estimate! Height = 29 ± 3 turtles
  58. Bootstrap on Linear Regression: What is the relationship between speed

    of wind and the height of the Yertle’s turtle tower?
  59. Bootstrap on Linear Regression: for i in range(10000): i =

    randint(20, size=20) slope, intercept = fit(x[i], y[i]) results[i] = (slope, intercept)
  60. Notes on Bootstrapping: - Bootstrap resampling is well-studied and rests

    on solid theoretical grounds. - Bootstrapping often doesn’t work well for rank-based statistics (e.g. maximum value) - Works poorly with very few samples (N > 20 is a good rule of thumb) - As always, be careful about selection biases & non-independent data!
  61. Onceler Industries: Sales of Thneeds I'm being quite useful! This

    thing is a Thneed. A Thneed's a Fine-Something- That-All-People-Need!
  62. y = a + bx y = a + bx

    + cx2 But which model is a better fit?
  63. y = a + bx y = a + bx

    + cx2 Can we judge by root-mean- square error? RMS error = 63.0 RMS error = 51.5
  64. In general, more flexible models will always have a lower

    RMS error. y = a + bx y = a + bx + cx2 y = a + bx + cx2 + dx3 y = a + bx + cx2 + dx3 + ex4 y = a + ⋯
  65. y = a + bx + cx2 + dx3 +

    ex4 + fx5 + ⋯ + nx14 RMS error does not tell the whole story.
  66. Classic Method Can estimate degrees of freedom easily because the

    models are nested . . . Difference in Mean Squared Error follows chi-square distribution:
  67. Classic Method Can estimate degrees of freedom easily because the

    models are nested . . . Difference in Mean Squared Error follows chi-square distribution: Plug in our numbers . . .
  68. Classic Method Can estimate degrees of freedom easily because the

    models are nested . . . Difference in Mean Squared Error follows chi-square distribution: Plug in our numbers . . . Wait… what question were we trying to answer again?
  69. . . . I biggered the loads of the thneeds

    I shipped out! I was shipping them forth, to the South, to the East to the West, to the North!
  70. Notes on Cross-Validation: - This was “2-fold” cross-validation; other CV

    schemes exist & may perform better for your data (see e.g. scikit-learn docs) - Cross-validation is the go-to method for model evaluation in machine learning, as statistics of the models are often not known in the classical sense. - Again: caveats about selection bias and independence in data.
  71. Sampling Methods allow you to use intuitive computational approaches in

    place of often non-intuitive statistical rules. If you can write a for-loop you can do statistical analysis.
  72. Things I didn’t have time for: - Bayesian Methods: very

    intuitive & powerful approaches to more sophisticated modeling. (see e.g. Bayesian Methods for Hackers by Cam Davidson-Pilon) - Selection Bias: if you get data selection wrong, you’ll have a bad time. (See Chris Fonnesbeck’s Scipy 2015 talk, Statistical Thinking for Data Science) - Detailed considerations on use of sampling, shuffling, and bootstrapping. (I recommend Statistics Is Easy by Shasha & Wilson And Resampling: The New Statistics by Julian Simon)
  73. ~ Thank You! ~ Email: [email protected] Twitter: @jakevdp Github: jakevdp

    Web: http://vanderplas.com/ Blog: http://jakevdp.github.io/ Slides available at http://speakerdeck.com/jakevdp/statistics-for-hackers/