Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Transforming code into Beautiful, Idiomatic Pyt...

Transforming code into Beautiful, Idiomatic Python by Raymond Hettinger

Learn to take better advantage of Python's best features and improve existing code through a series of code transformations, "When you see this, do that instead."

PyCon 2013

March 15, 2013
Tweet

More Decks by PyCon 2013

Other Decks in Programming

Transcript

  1. When  you  see  this,  do  that  instead!   •  Replace

     tradi:onal  index  manipula:on  with   Python’s  core  looping  idioms   •  Learn  advanced  techniques  with  for-­‐else   clauses  and  the  two  argument  form  of  iter()   •  Improve  your  craGmanship  and  aim  for  clean,   fast,  idioma:c  Python  code  
  2. Looping  over  a  range  of  numbers   for i in

    [0, 1, 2, 3, 4, 5]: print i**2 for i in range(6): print i**2 for i in xrange(6): print i**2
  3. Looping  over  a  collec:on   colors = ['red', 'green', 'blue',

    'yellow'] for i in range(len(colors)): print colors[i] for color in colors: print color
  4. Looping  backwards   colors = ['red', 'green', 'blue', 'yellow'] for

    i in range(len(colors)-1, -1, -1): print colors[i] for color in reversed(colors): print color
  5. Looping  over  a  collec:on  and  indicies   colors = ['red',

    'green', 'blue', 'yellow'] for i in range(len(colors)): print i, '-->', colors[i] for i, color in enumerate(colors): print i, '-->', color
  6. Looping  over  two  collec:ons   names = ['raymond', 'rachel', 'matthew']

    colors = ['red', 'green', 'blue', 'yellow'] n = min(len(names), len(colors)) for i in range(n): print names[i], '-->', colors[i] for name, color in zip(names, colors): print name, '-->', color for name, color in izip(names, colors): print name, '-->', color
  7. Looping  in  sorted  order   colors = ['red', 'green', 'blue',

    'yellow'] for color in sorted(colors): print color for color in sorted(colors, reverse=True): print color
  8. Custom  sort  order   colors = ['red', 'green', 'blue', 'yellow']

    def compare_length(c1, c2): if len(c1) < len(c2): return -1 if len(c1) > len(c2): return 1 return 0 print sorted(colors, cmp=compare_length) print sorted(colors, key=len)
  9. Call  a  func:on  un:l  a  sen:nel  value   blocks =

    [] while True: block = f.read(32) if block == '': break blocks.append(block) blocks = [] for block in iter(partial(f.read, 32), ''): blocks.append(block)
  10. Dis:nguishing  mul:ple  exit  points  in  loops   def find(seq, target):

    found = False for i, value in enumerate(seq): if value == tgt: found = True break if not found: return -1 return i def find(seq, target): for i, value in enumerate(seq): if value == tgt: break else: return -1 return i
  11. Dic:onary  Skills   •  Mastering  dic:onaries  is  a  fundamental  

    Python  skill   •  They  are  fundamental  for  expressing   rela:onships,  linking,  coun:ng,  and  grouping  
  12. Looping  over  dic:onary  keys   d = {'matthew': 'blue', 'rachel':

    'green', 'raymond': 'red'} for k in d: print k for k in d.keys(): if k.startswith('r'): del d[k] d = {k : d[k] for k in d if not k.startswith('r')}
  13. Looping  over  a  dic:onary  keys  and   values   for

    k in d: print k, '-->', d[k] for k, v in d.items(): print k, '-->', v for k, v in d.iteritems(): print k, '-->', v
  14. Construct  a  dic:onary  from  pairs   names = ['raymond', 'rachel',

    'matthew'] colors = ['red', 'green', 'blue'] d = dict(izip(names, colors)) {'matthew': 'blue', 'rachel': 'green', 'raymond': 'red'} d = dict(enumerate(names)) {0: 'raymond', 1: 'rachel', 2: 'matthew'}
  15. Coun:ng  with  dic:onaries   colors = ['red', 'green', 'red', 'blue',

    'green', 'red'] d = {} for color in colors: if color not in d: d[color] = 0 d[color] += 1 {'blue': 1, 'green': 2, 'red': 3} d = {} for color in colors: d[color] = d.get(color, 0) + 1 d = defaultdict(int) for color in colors: d[color] += 1
  16. Grouping  with  dic:onaries  -­‐-­‐  Part  I   names = ['raymond',

    'rachel', 'matthew', 'roger', 'betty', 'melissa', 'judith', 'charlie'] d = {} for name in names: key = len(name) if key not in d: d[key] = [] d[key].append(name) {5: ['roger', 'betty'], 6: ['rachel', 'judith'], 7: ['raymond', 'matthew', 'melissa', 'charlie']}
  17. Grouping  with  dic:onaries  -­‐-­‐  Part  II   d = {}

    for name in names: key = len(name) d.setdefault(key, []).append(name) d = defaultdict(list) for name in names: key = len(name) d[key].append(name)
  18. Is  a  dic:onary  popitem()  atomic?   d = {'matthew': 'blue',

    'rachel': 'green', 'raymond': 'red'} while d: key, value = d.popitem() print key, '-->', value
  19. Linking  dic:onaries   defaults = {'color': 'red', 'user': 'guest'} parser

    = argparse.ArgumentParser() parser.add_argument('-u', '--user') parser.add_argument('-c', '--color') namespace = parser.parse_args([]) command_line_args = {k:v for k, v in vars(namespace).items() if v} d = defaults.copy() d.update(os.environ) d.update(command_line_args) d = ChainMap(command_line_args, os.environ, defaults)
  20. Improving  Clarity   •  Posi:onal  arguments  and  indicies  are  nice

      •  Keywords  and  names  are  beRer   •  The  first  way  is  convenient  for  the  computer   •  The  second  corresponds  to  how  human’s   think  
  21. Clarify  func:on  calls  with  keyword   arguments   twitter_search('@obama', False,

    20, True) twitter_search('@obama', retweets=False, numtweets=20, popular=True)
  22. Clarify  mul:ple  return  values  with   named  tuples   doctest.testmod()

    (0, 4) doctest.testmod() TestResults(failed=0, attempted=4) TestResults = namedtuple('TestResults', ['failed', 'attempted'])
  23. Unpacking  sequences   p = 'Raymond', 'Hettinger', 0x30, '[email protected]' fname

    = p[0] lname = p[1] age = p[2] email = p[3] fname, lname, age, email = p
  24. Upda:ng  mul:ple  state  variables   def fibonacci(n): x = 0

    y = 1 for i in range(n): print x t = y y = x + y x = t def fibonacci(n): x, y = 0, 1 for i in range(n): print x x, y = y, x+y
  25. Tuple  packing  and  unpacking   •  Don’t  under-­‐es:mate  the  advantages

     of   upda:ng  state  variables  at  the  same  :me   •  It  eliminates  an  en:re  class  of  errors  due  to   out-­‐of-­‐order  updates   •  It  allows  high  level  thinking:    “chunking”  
  26. Simultaneous  state  updates   tmp_x = x + dx *

    t tmp_y = y + dy * t tmp_dx = influence(m, x, y, dx, dy, partial='x') tmp_dy = influence(m, x, y, dx, dy, partial='y') x = tmp_x y = tmp_y dx = tmp_dx dy = tmp_dy x, y, dx, dy = (x + dx * t, y + dy * t, influence(m, x, y, dx, dy, partial='x'), influence(m, x, y, dx, dy, partial='y'))
  27. Efficiency   •  An  op:miza:on  fundamental  rule   •  Don’t

     cause  data  to  move  around   unnecessarily   •  It  takes  only  a  liRle  care  to  avoid  O(n**2)   behavior  instead  of  linear  behavior  
  28. Concatena:ng  strings   names = ['raymond', 'rachel', 'matthew', 'roger', 'betty',

    'melissa', 'judith', 'charlie'] s = names[0] for name in names[1:]: s += ', ' + name print s print ', '.join(names)
  29. Upda:ng  sequences   names = ['raymond', 'rachel', 'matthew', 'roger', 'betty',

    'melissa', 'judith', 'charlie'] del names[0] names.pop(0) names.insert(0, 'mark') names = deque(['raymond', 'rachel', 'matthew', 'roger', 'betty', 'melissa', 'judith', 'charlie']) del names[0] names.popleft() names.appendleft('mark')
  30. Decorators  and  Context  Managers   •  Helps  separate  business  logic

     from  administra:ve   logic   •  Clean,  beau:ful  tools  for  factoring  code  and   improving  code  reuse   •  Good  naming  is  essen:al.       •  Remember  the  Spiderman  rule:    With  great   power,  comes  great  respsonsibility!    
  31. Using  decorators  to  factor-­‐out   administra:ve  logic   def web_lookup(url,

    saved={}): if url in saved: return saved[url] page = urllib.urlopen(url).read() saved[url] = page return page @cache def web_lookup(url): return urllib.urlopen(url).read()
  32. Caching  decorator   def cache(func): saved = {} @wraps(func) def

    newfunc(*args): if args in saved: return newfunc(*args) result = func(*args) saved[args] = result return result return newfunc
  33. Factor-­‐out  temporary  contexts   old_context = getcontext().copy() getcontext().prec = 50

    print Decimal(355) / Decimal(113) setcontext(old_context) with localcontext(Context(prec=50)): print Decimal(355) / Decimal(113)
  34. How  to  open  and  close  files   f = open('data.txt')

    try: data = f.read() finally: f.close() with open('data.txt') as f: data = f.read()
  35. How  to  use  locks   # Make a lock lock

    = threading.Lock() # Old-way to use a lock lock.acquire() try: print 'Critical section 1' print 'Critical section 2' finally: lock.release() # New-way to use a lock with lock: print 'Critical section 1' print 'Critical section 2'
  36. Factor-­‐out  temporary  contexts   with open('help.txt', 'w') as f: oldstdout

    = sys.stdout sys.stdout = f try: help(pow) finally: sys.stdout = oldstdout with open('help.txt', 'w') as f: with redirect_stdout(f): help(pow)
  37. Context  manager:    redirect_stdout()   @contextmanager def redirect_stdout(fileobj): oldstdout =

    sys.stdout sys.stdout = fileobj try: yield fieldobj finally: sys.stdout = oldstdout
  38. Concise  Expressive  One-­‐Liners   Two  conflic:ng  rules:   1.  Don’t

     put  too  much  on  one  line   2.  Don’t  break  atoms  of  thought  into         subatomic  par:cles   Raymond’s  rule:   •  One  logical  line  of  code  equals  one  sentence   in  English  
  39. List  Comprehensions  and  Generator   Expressions   result = []

    for i in range(10): s = i ** 2 result.append(s) print sum(result) print sum([i**2 for i in xrange(10)]) print sum(i**2 for i in xrange(10))