Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Look ma' I know my algorithms!
Search
Lucia Escanellas
October 24, 2014
Programming
7
440
Look ma' I know my algorithms!
RubyConf Argentina 2014
Lucia Escanellas
October 24, 2014
Tweet
Share
Other Decks in Programming
See All in Programming
PHPで学ぶプログラミングの教訓 / Lessons in Programming Learned through PHP
nrslib
4
390
Androidアプリのモジュール分割における:x:commonを考える
okuzawats
1
190
情報漏洩させないための設計
kubotak
4
790
17年周年のWebアプリケーションにTanStack Queryを導入する / Implementing TanStack Query in a 17th Anniversary Web Application
saitolume
0
250
rails statsで大解剖 🔍 “B/43流” のRailsの育て方を歴史とともに振り返ります
shoheimitani
2
950
KMP와 kotlinx.rpc로 서버와 클라이언트 동기화
kwakeuijin
0
180
ゆるやかにgolangci-lintのルールを強くする / Kyoto.go #56
utgwkk
2
440
テストコード書いてみませんか?
onopon
2
200
技術的負債と向き合うカイゼン活動を1年続けて分かった "持続可能" なプロダクト開発
yuichiro_serita
0
140
Go の GC の不得意な部分を克服したい
taiyow
3
840
Effective Signals in Angular 19+: Rules and Helpers
manfredsteyer
PRO
0
120
[JAWS-UG横浜 #76] イケてるアップデートを宇宙いち早く紹介するよ!
maroon1st
0
510
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
A Philosophy of Restraint
colly
203
16k
Making Projects Easy
brettharned
116
6k
Designing Experiences People Love
moore
138
23k
The Cost Of JavaScript in 2023
addyosmani
46
7k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.4k
Designing on Purpose - Digital PM Summit 2013
jponch
116
7k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Docker and Python
trallard
42
3.1k
Transcript
Look ma’, I know my algorithms!
Lucia Escanellas raviolicode
Attributions https://flic.kr/p/6DDvQP https://flic.kr/p/qv5Zp https://flic.kr/p/6SaZsP https://flic.kr/p/edauSN https://flic.kr/p/4uNfK8 https://flic.kr/p/o9ggdk https://flic.kr/p/6kfuHz https://flic.kr/p/5kBtbS
Speed Speed
Zen Elegance Elegance
Toolbox
Theory Theory
This example Not so common
FROM >30HS TO 18 S
WHY USE ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
WHY USE ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
WHY USING ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
Let’s have a look at the PROBLEM
Ordered array How many pairs (a,b) where a ≠ b
-100 <= a + b <= 100
Array: [-100, 1, 100]
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
-100 + 1 = 99 YES
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
-100 + 100 = 0 YES
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
1 + 100 = 101 NO
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
Result: 2
First solution Combinations of 2 elements Filter by: -100 <=
a + b <= 100
def count! combinations = @numbers.combination(2).to_a! ! combinations! .map{ |a,b| a
+ b }! .select do |sum|! sum.abs <= THRESHOLD! end.size! end
10K takes 10s BUT 100M takes 30hs
Time to buy a NEW LAPTOP!
Big O notation How WELL an algorithm SCALES as the
DATA involved INCREASES
Calc Array size (length=N) Count elements one by one: O(N)
Calc Array size (length=N) Count elements one by one: O(N)
Length stored in variable: O(1)
Graphical Math Properties Order Mathematical Properties
Remember: f < g => O(f + g) = O(g)
O(K . f) = O(f) O(1) < O(ln N) < O(N) < O(N2) < O(eN)
Ex: Binary Search Find 7 in [1, 2, 3, 4,
5, 6, 7, 8] 1. element in the middle is 5 2. 5 == 7 ? NO 3. 5 < 7 ? YES => Find 7 in [6, 7, 8] Step 1
! Find 7 in [0, 1, 2, 3, 4, 5,
6, 7, 8] 1. element in the middle is 7 2. 7 == 7 ? YES! FOUND IT!! Step 2
Ex: Binary Search Worst case: ceil ( Log2 N )
23 = 8 ONLY 3 steps
Typical examples Access to a Hash O(1) Binary search O(log
N) Sequential search O(N) Traverse a matrix NxN O(N2)
DON’T JUST BELIEVE ME fooplot.com
BUT raviolicode, I’m getting BORED
I WANT CONCURRENCY I WANT CONCURRENCY
wait… was it Concurrency? or Parallelism?
None
None
None
None
None
None
GIL+CPU-bound NO I/O OPERATIONS concurrency = OVERHEAD
NOT what I was expecting
Parallelism... Parallelism
None
What do we REALLY get? O(N2 / cores) = O(N
2 ) jRubyGo Scala
NO Spoilers O(N2) O(N.log(N)) O(N)
THINKING algorithms is as IMPORTANT as ANY OTHER technique
BYE.
Wait! It's still slow. Wait! It’s still SLOW
Given [1,2,3,4,5] Take 1, then print [5,4,3,2] Take 2, then
print [5,4,3] and so on…
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end Looks like O(N)
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end Behaves like O(N2)
Let’s Look at the DOCS Ruby-Doc.org ! #reverse
O(N) hidden! O(N)!
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end O(N2)!
Leaky abstractions LEAKY ABSTRACTIONS
All Non-trivial abstractions are LEAKY to some degree
ABSTRACTIONS DO NOT really SIMPLIFY as they were meant to
Knowing THE ALGORITHMS Behind everyday methods PAYS OFF
Thanks :) Thanks :)