$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
新規検索基盤でマッチング精度向上に挑む! ~『ホットペッパーグルメ』の開発事例 ビジネス編
Search
Recruit
PRO
March 06, 2025
Technology
3
400
新規検索基盤でマッチング精度向上に挑む! ~『ホットペッパーグルメ』の開発事例 ビジネス編
2025/2/20に開催したRecruit Tech Conference 2025の吉鷹の資料です
Recruit
PRO
March 06, 2025
Tweet
Share
More Decks by Recruit
See All by Recruit
事業の財務責任に向き合うリクルートデータプラットフォームのFinOps
recruitengineers
PRO
2
220
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
260
プロダクトマネジメントの分業が生む「デリバリーの渋滞」を解消するTPMの越境
recruitengineers
PRO
3
890
あなたの知らない Linuxカーネル脆弱性の世界
recruitengineers
PRO
4
340
dbtとBigQuery MLで実現する リクルートの営業支援基盤のモデル開発と保守運用
recruitengineers
PRO
5
260
『ホットペッパービューティー』のiOSアプリをUIKitからSwiftUIへ段階的に移行するためにやったこと
recruitengineers
PRO
4
1.8k
経営の意思決定を加速する 「事業KPIダッシュボード」構築の全貌
recruitengineers
PRO
4
420
Browser
recruitengineers
PRO
12
4.1k
JavaScript 研修
recruitengineers
PRO
9
2.3k
Other Decks in Technology
See All in Technology
AI駆動開発の実践とその未来
eltociear
2
500
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9.9k
AgentCore BrowserとClaude Codeスキルを活用した 『初手AI』を実現する業務自動化AIエージェント基盤
ruzia
7
1.6k
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
770
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.1k
【開発を止めるな】機能追加と並行して進めるアーキテクチャ改善/Keep Shipping: Architecture Improvements Without Pausing Dev
bitkey
PRO
1
130
日本の AI 開発と世界の潮流 / GenAI Development in Japan
hariby
1
480
特別捜査官等研修会
nomizone
0
580
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
21
8.2k
NIKKEI Tech Talk #41: セキュア・バイ・デザインからクラウド管理を考える
sekido
PRO
0
220
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
290
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
5
860
Featured
See All Featured
The Mindset for Success: Future Career Progression
greggifford
PRO
0
200
The Limits of Empathy - UXLibs8
cassininazir
1
190
Everyday Curiosity
cassininazir
0
110
How to make the Groovebox
asonas
2
1.8k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
230
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Visualization
eitanlees
150
16k
Transcript
新規検索基盤でマッチング精度向上に挑む! ~『ホットペッパーグルメ』の開発事例 RECRUIT TECH CONFERENCE 2025 ビジネス編 吉鷹 伸太朗 株式会社リクルート プロダクトディベロップメント室 グループマネジャー
吉鷹 伸太朗 最近犬をお迎えして日々悪戦苦闘中 経歴 / Career 2019年にリクルートに新卒入社。 『ホットペッパーグルメ』や『じゃらん』のレコメンド 施策等を多数推進。 2024年より飲食データサイエンスGのグループマネ
ジャーに任用。 趣味 / Hobbies データ推進室 販促領域データソリューション3ユニット (飲食・ビューティー) 飲食・ビューティーデータソリューション部 飲食データサイエンスG
• ビジネス編 ◦ 『ホットペッパーグルメ』におけるレコメンド・検索施策がどのように 進展していったか? 本日お話しすること
『ホットペッパーグルメ』は、国内最大級の飲食店情 報サイト 毎日多くの飲食店利用ユーザーが訪問・利用している 弊グループでは、膨大な店舗とユーザーのデータを活 かして、『ホットペッパーグルメ』におけるレコメン ドと検索の改善を取り組んできた ホットペッパーグルメ
レコメンドと検索における課題 レコメンド • Impression量の少ない一部画面にのみレコメンドが存在していた • 既存レコメンドには以下のような課題が存在していた ◦ 高々日次バッチの事前推論のみ ◦ 機械学習アルゴリズムが非導入
検索 • ビジネス的なリスクが内包されるため検索システムへの介入には慎重だった • そのため、既存検索アルゴリズムのチューニングは停止しており、 古いまま運用されていた
データ施策導入の壁 レコメンドや検索等のデータ施策の導入や改善には3つの壁が存在した • データ施策の実績が少なく、データ組織への信頼残高が少なかった → 他施策との兼ね合いで優先度が下がりがち • 改修する際の関係部署が多く、前述の優先度もあり工数取得が難航 • 開発期間が長く、仮説検証の試行が回せない
工数取得が難航して、計画が進まない 開発期間が長く、なかなかABテストへ進めない
打ち手①:小さい成果から信頼を蓄積 2019年〜2021年 検索ワード入力画面でのレコメンド 小さい画面でのレコメンドからはじめ、徐々に施策規模を拡張していった
打ち手①:小さい成果から信頼を蓄積 2019年〜2021年 検索ワード入力画面でのレコメンド 2022年 アプリトップ下部でのレコメンド 小さい画面でのレコメンドからはじめ、徐々に施策規模を拡張していった
打ち手①:小さい成果から信頼を蓄積 2023年 アプリトップ画面の刷新 小さい画面でのレコメンドからはじめ、徐々に施策規模を拡張していった
打ち手①:小さい成果から信頼を蓄積 2023年 アプリトップ画面の刷新 2024年 検索アルゴリズム改善 (*SIGIR-AP 2024 ポスター発表より) 小さい画面でのレコメンドからはじめ、徐々に施策規模を拡張していった
打ち手①:小さい成果から信頼を蓄積 小さい画面でのレコメンドからはじめ、徐々に施策規模を拡張していった 当初 データ組織 2名 ↓ 小さなレコメンド施策1つ データ組織 20名以上 ↓
レコメンド施策複数 検索アルゴリズム サジェスト … 現在
打ち手②:密結合→疎結合なアーキテクチャへ 疎結合なアーキテクチャを採用することで関係部署/工数を減少 Storage 環境① API 環境② BATCH 組織A 組織B 組織C
データ組織
打ち手②:密結合→疎結合なアーキテクチャへ 疎結合なアーキテクチャを採用することで関係部署/工数を減少 Storage 環境① API 環境② BATCH 環境① API 環境②
BATCH API 組織A 組織B 組織C データ組織 組織A 組織B データ組織 データ組織
打ち手②:密結合→疎結合なアーキテクチャへ 疎結合なアーキテクチャを採用することで関係部署/工数を減少 Storage 環境① API 環境② BATCH 環境① API 環境②
BATCH API 組織A 組織B 組織C データ組織 組織A 組織B データ組織 データ組織 データ組織で APIを用意 → 組織Cの介 在が不要に
打ち手②:密結合→疎結合なアーキテクチャへ 疎結合なアーキテクチャを採用することで関係部署/工数を減少 Storage 環境① API 環境② BATCH 環境① API 環境②
BATCH API 組織A 組織B 組織C データ組織 組織A 組織B データ組織 データ組織 自由度をもたせた通信に設計 ↓ データ組織側の改修だけで一 定の試行が可能に データ組織で APIを用意 → 組織Cの介 在が不要に
打ち手③:開発方式/体制の変更 • ウォーターフォール開発 → アジャイル開発へ変更 • レコメンド/検索改善施策において、 一定のスコープ内でデータ組織の人員をPM/PLへ設定 柔軟な開発の実施が可能に →
仮説検証の試行が早く回せるように PO=Producer PM=DATA PL=DATA Team Team ⋯ 体制の一例 Team ⋯ ⋯
データ施策導入の壁が解消! レコメンドや検索等のデータ施策の導入や改善には3つの壁が存在した • データ施策の実績が少なく、データ組織への信頼残高が少なかった → 他施策との兼ね合いで優先度が下がりがち • 改修する際の関係部署が多く、前述の優先度もあり工数取得が難航 • 開発期間が長く、仮説検証の試行が回せない
小さい成果から信頼を蓄積 密結合→疎結合なアーキテクチャへ 開発方式/体制の変更 ✔ ✔ ✔
レコメンドと検索における課題も解消! レコメンド • Impression量の少ない一部画面にのみレコメンドが存在していた • 既存レコメンドには以下のような課題が存在していた ◦ 高々日次バッチの事前推論のみ ◦ 機械学習アルゴリズムが非導入
検索 • ビジネス的なリスクが内包されるため検索システムへの介入には慎重だった • そのため、既存検索アルゴリズムのチューニングは停止しており、 古いまま運用されていた APPのTOP画面に大きな枠を設置 ✔ オンライン推論の 機械学習アルゴリズムも導入 ✔ 検索アルゴリズムの改善も実施(後ほど詳述) ✔
『ホットペッパーグルメ』におけるレコメンドや検索等のデータ施策の導入や改 善は複数の要因によって進んでいなかった 以下の打ち手を実施することで、改善が進むようになった • 小さい成果から信頼を蓄積 • 密結合→疎結合なアーキテクチャへ • 開発方式/体制の変更 最初は非常に少ないメンバーでスタートでしたが、今では多くの仲間たちととも
に日々改善に取り組んでいます! 一緒に働いてくださる仲間も募集しています!! 興味があれば是非ご連絡ください!! まとめ