Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon SageMakerが存在しない世界線 のAWS上で実現する機械学習基盤
Search
貞松政史
June 08, 2023
Technology
0
170
Amazon SageMakerが存在しない世界線 のAWS上で実現する機械学習基盤
2023/06/03 JAWS-UG Okayama 2023のピンチヒッターセッション
※内容はAKIBA.AWS ONLINE #9の再演です
貞松政史
June 08, 2023
Tweet
Share
More Decks by 貞松政史
See All by 貞松政史
Amazon Forecast亡き今、我々がマネージドサービスに頼らず時系列予測を実行する方法
sadynitro
0
260
今日のハイライトをシステマティックに
sadynitro
1
40
はじめてのレコメンド〜Amazon Personalizeを使った推薦システム超超超入門〜
sadynitro
1
1k
予知保全利用を目指した外観検査AIの開発 〜画像処理AIを用いた外観画像に対する異常検知〜
sadynitro
0
590
20230904_GoogleCloudNext23_Recap_AI_ML
sadynitro
0
710
Foundation Model全盛時代を生きるAI/MLエンジニアの生存戦略
sadynitro
0
810
Amazon SageMakerが存在しない世界線のAWS上で実現する機械学習基盤
sadynitro
0
1.6k
みんな大好き強化学習
sadynitro
0
1k
機械学習エンジニアはMLOpsの夢を見るか?
sadynitro
0
1.2k
Other Decks in Technology
See All in Technology
開発生産性向上! 育成を「改善」と捉えるエンジニア育成戦略
shoota
2
460
最近のSfM手法まとめ - COLMAP / GLOMAPを中心に -
kwchrk
3
410
C++26 エラー性動作
faithandbrave
2
820
TSKaigi 2024 の登壇から広がったコミュニティ活動について
tsukuha
0
170
PHP ユーザのための OpenTelemetry 入門 / phpcon2024-opentelemetry
shin1x1
3
1.5k
AWS re:Invent 2024で発表された コードを書く開発者向け機能について
maruto
0
210
クレカ・銀行連携機能における “状態”との向き合い方 / SmartBank Engineer LT Event
smartbank
2
100
2024年にチャレンジしたことを振り返るぞ
mitchan
0
150
[Oracle TechNight#85] Oracle Autonomous Databaseを使ったAI活用入門
oracle4engineer
PRO
1
130
KnowledgeBaseDocuments APIでベクトルインデックス管理を自動化する
iidaxs
1
280
宇宙ベンチャーにおける最近の情シス取り組みについて
axelmizu
0
120
[トレノケ雲の会 mod.13] 3回目のre:Inventで気づいたこと -CloudOperationsを添えて-
shintaro_fukatsu
0
110
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
The Pragmatic Product Professional
lauravandoore
32
6.3k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
4 Signs Your Business is Dying
shpigford
182
21k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
910
How STYLIGHT went responsive
nonsquared
96
5.2k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Building Your Own Lightsaber
phodgson
103
6.1k
GraphQLとの向き合い方2022年版
quramy
44
13k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Transcript
Amazon SageMakerが存在しない世界線 のAWS上で実現する機械学習基盤 2023.06.03 JAWS-UG Okayama 2023 1
2 ⾃⼰紹介 info award ˞.BDIJOF-FBSOJOHΧςΰϦ • ఃদ ࢙ʢαμϚπ Ϛαγʣ •
5XJUUFSJE!TBEZ@OJUSP • Ϋϥεϝιουגࣜձࣾ %"ࣄۀຊ෦ ػցֶशνʔϜ Ϛωʔδϟʔ • ΦΧϠϚίϯϐϡʔλαΠΤϯεϥϘओ࠵
3 AWSで… AWSで機械学習と⾔えば Amazon SageMaker︕
4 本当に…︖ 本当にそれだけ︖
5 状況は様々 • 現在の環境をそのまま流⽤したい • 部分的に⼩さく始めたい • サービスのお作法を気にしたくない • コストが気になる
• 他の環境への移植も考慮したい
6 ご紹介します Amazon SageMakerを使⽤しない アーキテクチャをご紹介
7 おしながき • 機械学習基盤に必要な要素 • 仮想マシンを使うアーキテクチャ • コンテナを活⽤したアーキテクチャ • サーバーレスアーキテクチャ
• パイプライン処理やCI/CDを考える • 実験管理やモニタリングはどうする︖
8 機械学習基盤に必要な要素 • 機械学習基盤に必要な要素 • 仮想マシンを使うアーキテクチャ • コンテナを活⽤したアーキテクチャ • サーバーレスアーキテクチャ
• パイプライン処理やCI/CDを考える • 実験管理やモニタリングはどうする︖
9 MLOpsを考慮した機械学習基盤 MLOps: 機械学習における継続的デリバリーと⾃動化のパイプライン https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning Google Cloudが定義するMLOps (レベル別) • MLOpsレベル
0 : ⼿動プロセス • MLOpsレベル 1 : MLパイプラインの⾃動化 • MLOpsレベル 2 : CI/CDパイプラインの⾃動化
10 機械学習基盤に必要な要素 データ蓄積 デプロイ 推論実⾏ 学習パイプライン 評価 検証 推論 学習
前処理 データ 抽出 再学習 トリガー ロギング モニタリング 実験管理 特徴量ストア
11 仮想マシンを使うアーキテクチャ • 機械学習基盤に必要な要素 • 仮想マシンを使うアーキテクチャ • コンテナを活⽤したアーキテクチャ • サーバーレスアーキテクチャ
• パイプライン処理やCI/CDを考える • 実験管理やモニタリングはどうする︖
12 Amazon EC2を利⽤ (⾮推奨) • 如何ようにでもできる • データ抽出、前処理、学習、 推論、デプロイまで1台でも 完結できる
(⾮推奨) • とはいえ実装コスト、管理 コストが爆増 • 少なくとも各処理フェーズ ごとにコンテナで管理する べき Amazon EC2 Database Amazon S3
13 コンテナを活⽤したアーキテクチャ • 機械学習基盤に必要な要素 • 仮想マシンを使うアーキテクチャ • コンテナを活⽤したアーキテクチャ • サーバーレスアーキテクチャ
• パイプライン処理やCI/CDを考える • 実験管理やモニタリングはどうする︖
14 コンテナを利⽤したコンピューティング • Amazon ECS • フルマネージドなコンテナオーケストレーション • AWS Fargateをコンピューティング環境とするサーバー
レスなコンテナ実⾏ • AWS Batch • ジョブキューやコンピューティング環境、実⾏パラメー タ等を定義したバッチジョブのパッケージ • 実際に実⾏されるのはECSタスク • 実⾏環境はAWS Batchによって制御される
15 Amazon ECSを利⽤した学習・推論環境 • Amazon ECRからコンテナ イメージを取得して実⾏ • 定義されたタスクを呼び出し •
コンピューティング環境と してEC2とFargateが選択 できる Amazon S3 Amazon ECS AWS Fargate Amazon EC2 Database OR Amazon ECR Amazon API Gateway AWS Lambda
16 Amazon ECSを利⽤するメリット・デメリット • メリット • 実⾏環境や処理をコンテナに押し込めているのでポータ ビリティが⾼い • コンピューティング環境のスケーラビリティが⾼い
• Fargateを利⽤したサーバーレスなコンテナ実⾏ • デメリット • EC2利⽤(主にGPU利⽤想定)の場合はコスト⾼め • コールドスタート含めオーバーヘッドがある
17 AWS Batchを利⽤した学習・推論環境 • ジョブキュー、コン ピューティング環境、 ジョブ定義等を設定 • 定義されたジョブを呼 び出し
• 裏側でECSタスクが実 ⾏される Amazon S3 Amazon ECS AWS Fargate Amazon EC2 Database OR Amazon ECR Amazon API Gateway AWS Lambda AWS Batch Amazon EventBridge
18 AWS Batchを利⽤するメリット・デメリット • メリット • ECSのメリットをそのまま享受できる • EC2利⽤でもプロビジョニングから停⽌まで実⾏制御してくれる 為コスト低め
• スポットインスタンス利⽤でコストを下げる選択肢もある • ジョブキューを搭載しているので、⼤量の同時実⾏制御に向いて いる • デメリット • オーバーヘッドがかなりかかる為、⼩さな処理をたくさん実⾏す るようなワークロードには向かない
19 サーバーレスアーキテクチャ • 機械学習基盤に必要な要素 • 仮想マシンを使うアーキテクチャ • コンテナを活⽤したアーキテクチャ • サーバーレスアーキテクチャ
• パイプライン処理やCI/CDを考える • 実験管理やモニタリングはどうする︖
20 AWS Lambda (コンテナデプロイ)を利⽤ ;JQ ίϯςφ ετϨʔδॴ S3 ECR ετϨʔδαΠζ্ݶ
Ϧʔδϣϯ୯Ґ 75GB (上限緩和可能) ECRのクォータに準拠 ΞʔςΟϑΝΫταΠζ্ݶ 250 MB (展開後) 10 GB -BZFSରԠ あり なし ίʔυॺ໊ あり なし Lambda Functionのデプロイ形式の違いによる制限の違い https://aws.amazon.com/jp/builders-flash/202103/new-lambda-container-development/
21 AWS Lambdaを利⽤する場合の注意事項 • アーティファクトサイズ上限10GB • 同時実⾏数上限1000(同⼀アカウント同⼀リージョン内) • タイムアウト時間上限15分 •
メモリ割り当て上限10GB • Lambda Functionから「ファイル書き込み」ができる領域 は「/tmp」のみ (かつストレージ上限10GB) • Lambda⽤のコンテナイメージ作成時に幾つかお作法が存 在する(Dockerfileの書き⽅など)
22 AWS Lambdaを利⽤した推論エンドポイント • Lambda Functionで学習済みモデルを読み 込んで推論処理を実⾏する • コンテナ⾃体に学習済みモデルファイルを 詰め込むとファイルサイズが膨らむので、
S3に配置して実⾏時に読み込む⽅式 を推奨 • API Gatewayのタイムアウトが最 ⼤29秒なので、実際にはLambda Functionの処理を呼び出した段階でレスポ ンスを返して⾮同期に処理することを想定 Amazon S3 Amazon ECR Amazon API Gateway AWS Lambda
23 パイプライン処理やCI/CDを考える • 機械学習基盤に必要な要素 • 仮想マシンを使うアーキテクチャ • コンテナを活⽤したアーキテクチャ • サーバーレスアーキテクチャ
• パイプライン処理やCI/CDを考える • 実験管理やモニタリングはどうする︖
24 AWS CodePipeline・AWS CodeBuildを利⽤ • コードリポジトリに対するプッシュをトリガー • 最新のコードで再学習を実⾏ • 学習済みモデルをデプロイ
開発者 AWS CodeBuild AWS CodePipeline Amazon EventBridge AWS CodeCommit GitHub OR Event AWS CodeDeploy AWS Cloud 推論実⾏ 環境 学習実⾏ 環境
25 実験管理やモニタリングはどうする︖ • 機械学習基盤に必要な要素 • 仮想マシンを使うアーキテクチャ • コンテナを活⽤したアーキテクチャ • サーバーレスアーキテクチャ
• パイプライン処理やCI/CDを考える • 実験管理やモニタリングはどうする︖
26 Amazon AthenaやAmazon DynamoDBを利⽤ • 管理したいデータ • 学習データセット本体 (保存先) •
特徴量 • ハイパーパラメータ • コスト重視 (サーバーレスでストレージコストが安価) • SageMaker Feature Storeも裏側はAthena Amazon Athena Amazon DynamoDB
27 Amazon CloudWatchやAmazon EventBridgeを利⽤ • CloudWatchのカスタムメトリクスを使⽤して必要なデータを送信 • メトリクス値を利⽤してCloudWatch Alarmを設定 •
EventBridge経由で再学習をトリガー • SNS経由で通知を送信 開発者 AWS CodeBuild AWS CodePipeline Amazon EventBridge Event AWS CodeDeploy AWS Cloud 推論実⾏ 環境 学習実⾏ 環境 Amazon CloudWatch カスタムメトリクス送信 Amazon SNS
28 まとめ
29 まとめ • 機械学習基盤の要件は様々 • 幾つかの選択肢として、Amazon SageMakerを 利⽤しないアーキテクチャについてご紹介 • AWSのサービスを組み合わせることで要件を満たす
環境を柔軟に構築 • ポータビリティを重視して、主要な処理をコンテナ に押し込める⽅針が筋としては良さそう
30