Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[第2回 Azure Cosmos DB 勉強会] Data modelling and pa...
Search
SATO Naoki (Neo)
September 13, 2020
Technology
0
900
[第2回 Azure Cosmos DB 勉強会] Data modelling and partitioning in Azure Cosmos DB (Azure Cosmos DB でのデータモデリングとパーティション分割)
https://satonaoki.wordpress.com/2020/09/13/jcdug-cosmos-db-data-modeling/
SATO Naoki (Neo)
September 13, 2020
Tweet
Share
More Decks by SATO Naoki (Neo)
See All by SATO Naoki (Neo)
Build enterprise-grade AI agents with Azure AI Agent Service
satonaoki
1
290
Microsoft Build 2024 Updates
satonaoki
0
270
LLMOps with Azure Machine Learning prompt flow
satonaoki
1
710
マルチクラウド時代の企業における生成AIとデータベースの関係 (Oracle Technology Day)
satonaoki
0
860
Microsoft Copilot, your everyday AI companion (Machine Learning 15minutes! Broadcast #82)
satonaoki
0
1.2k
Microsoft Build 2023 Updates – Copilot Stack and Azure OpenAI Service (Machine Learning 15minutes! Broadcast #78)
satonaoki
2
1.2k
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
satonaoki
1
1.1k
30分でわかるマイクロサービスアーキテクチャ 第2版
satonaoki
9
6.8k
[Machine Learning 15minutes! Broadcast #67] Azure AI - Build 2022 Updates and more...
satonaoki
0
350
Other Decks in Technology
See All in Technology
エンジニアが組織に馴染むために勉強会を主催してチームの壁を越える
ohmori_yusuke
2
120
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
38k
[zh-TW] DevOpsDays Taipei 2025 -- Creating Awesome Change in SmartNews!(machine translation)
martin_lover
1
650
從開發到架構設計的可觀測性實踐
philipz
0
120
RDRA3.0を知ろう
kanzaki
2
440
AIとSREの未来 / AI and SRE
ymotongpoo
2
1.4k
継続戦闘能⼒
sansantech
PRO
0
220
mnt_data_とは?ChatGPTコード実行環境を深堀りしてみた
icck
0
210
Houtou.pm #1
papix
0
670
実践Kafka Streams 〜イベント駆動型アーキテクチャを添えて〜
joker1007
1
540
Roo Codeにすべてを委ねるためのルール運用
pharma_x_tech
1
230
libsyncrpcってなに?
uhyo
0
160
Featured
See All Featured
How to Ace a Technical Interview
jacobian
276
23k
The Cost Of JavaScript in 2023
addyosmani
49
8.1k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.3k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.4k
Building a Modern Day E-commerce SEO Strategy
aleyda
40
7.3k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
GraphQLとの向き合い方2022年版
quramy
46
14k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
14
1.5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Transcript
Data modelling and partitioning in Azure Cosmos DB (Azure Cosmos
DB でのデータ モデリングとパーティション分割)
Session's objectives
What is Azure Cosmos DB? Non-relational and horizontally scalable
What is Azure Cosmos DB? horizontally scalable
What is Azure Cosmos DB? non-relational
What is Azure Cosmos DB? non-relational and horizontally scalable
So is Azure Cosmos DB suitable for relational workloads?
Let's look at a concrete example
Identifying the operations we have to serve
Now let's implement this model on Azure Cosmos DB!
Starting with the Customer entity
Starting with the Customer entity
To embed or to reference?
To embed or to reference? - - - - -
-
Our first entity: Customer
Customer customers PK: ?
What is partitioning?
What is partitioning? logical partitions
What is partitioning? Andrew Theo Mark Tim Deborah Luis
What is partitioning? Max size: 20 GB Max size: 2
MB
What is partitioning?
What is partitioning?
What is partitioning?
What is partitioning? Andrew Theo Mark Tim Deborah Luis SELECT
* FROM c WHERE c.username = 'Mark' our partition key
What is partitioning? Andrew Theo Mark Tim Deborah Luis SELECT
* FROM c WHERE c.favoriteColor = 'orange' ?
Choosing a partition key for customers customers PK: ?
Choosing a partition key for customers customers PK: ?
Choosing a partition key for customers customers PK: id
Choosing a partition key for customers customers PK: id
Next: product categories
Product categories
Product categories productCategories PK: ?
Product categories productCategories PK: ? SELECT * FROM c
Product categories productCategories PK: type
Next: product tags
Product tags
Product tags productTags PK: ?
Product tags productTags PK: ?
Product tags productTags PK: type
Next: products
Products
Products
Products products PK: ?
Products products PK: ? CategoryA CategoryC CategoryB SELECT * FROM
c WHERE c.categoryId = 'CategoryA'
Products products PK: categoryId category name? tag names?
Products: how to return category and tag names? products SELECT
* FROM c WHERE c.categoryId = 'CategoryA' productCategories SELECT c.name FROM c WHERE c.id = 'CategoryA' productTags SELECT * FROM c WHERE c.id IN ('<tagId1>', '<tagId2>', '<tagId3>')
Introducing denormalization
Products: denormalizing category and tag names products PK: categoryId
Products: keeping everything in sync productCategories productTags products
Cosmos DB's change feed
Products: keeping everything in sync productCategories productTags products
Next: sales orders
Sales orders
Sales orders
Sales orders salesOrders PK: ?
Sales orders salesOrders PK: ?
Sales orders salesOrders PK: ? CustomerA CustomerC CustomerB SELECT *
FROM c WHERE c.customerId = 'CustomerA'
Sales orders salesOrders PK: customerId
Sales orders salesOrders PK: customerId customers PK: id
Mixing entities in the same container?
Sales orders salesOrders PK: customerId customers PK: id
Sales orders: mixing with customers customers PK: id
Sales orders: mixing with customers customers PK: customerId
Sales orders: mixing with customers customers PK: customerId
Sales orders: mixing with customers CustomerA CustomerC CustomerB customer sales
orders customers PK: customerId
Sales orders customers PK: customerId SELECT * FROM c WHERE
c.customerId = 'CustomerA' AND c.type = 'salesOrder'
Sales orders customers PK: customerId
Denormalizing the count of sales orders per customer
Denormalizing the count of sales orders per customer
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB customer sales orders customers PK: customerId
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB update the customer add a sales order customers PK: customerId
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB update the customer add a sales order
Sales orders customers PK: customerId SELECT * FROM c WHERE
c.type = 'customer' ORDER BY c.salesOrderCount DESC
Our final design customers PK: customerId productCategories PK: type productTags
PK: type products PK: categoryId
Our final design, optimized! customers PK: customerId productMeta PK: type
products PK: categoryId
Key takeaways
Going further https://docs.microsoft.com/azure/cosmos-db/modeling-data https://docs.microsoft.com/azure/cosmos-db/how-to-model-partition-example https://devblogs.microsoft.com/cosmosdb/data-modeling-and-partitioning-for-relational-workloads/ https://github.com/AzureCosmosDB/labs/blob/master/readme.md https://github.com/AzureCosmosDB/labs/blob/master/decks/Data-Modeling.pptx