Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[第2回 Azure Cosmos DB 勉強会] Data modelling and pa...
Search
SATO Naoki (Neo)
September 13, 2020
Technology
0
950
[第2回 Azure Cosmos DB 勉強会] Data modelling and partitioning in Azure Cosmos DB (Azure Cosmos DB でのデータモデリングとパーティション分割)
https://satonaoki.wordpress.com/2020/09/13/jcdug-cosmos-db-data-modeling/
SATO Naoki (Neo)
September 13, 2020
Tweet
Share
More Decks by SATO Naoki (Neo)
See All by SATO Naoki (Neo)
Build enterprise-grade AI agents with Azure AI Agent Service
satonaoki
1
490
Microsoft Build 2024 Updates
satonaoki
0
320
LLMOps with Azure Machine Learning prompt flow
satonaoki
1
840
マルチクラウド時代の企業における生成AIとデータベースの関係 (Oracle Technology Day)
satonaoki
0
970
Microsoft Copilot, your everyday AI companion (Machine Learning 15minutes! Broadcast #82)
satonaoki
0
1.3k
Microsoft Build 2023 Updates – Copilot Stack and Azure OpenAI Service (Machine Learning 15minutes! Broadcast #78)
satonaoki
2
1.3k
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
satonaoki
1
1.1k
30分でわかるマイクロサービスアーキテクチャ 第2版
satonaoki
9
7.2k
[Machine Learning 15minutes! Broadcast #67] Azure AI - Build 2022 Updates and more...
satonaoki
0
390
Other Decks in Technology
See All in Technology
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
260
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.4k
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
9
4.3k
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
200
なぜ あなたはそんなに re:Invent に行くのか?
miu_crescent
PRO
0
210
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
17
2.8k
業務の煩悩を祓うAI活用術108選 / AI 108 Usages
smartbank
9
13k
New Relic 1 年生の振り返りと Cloud Cost Intelligence について #NRUG
play_inc
0
240
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
250
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
0
290
Next.js 16の新機能 Cache Components について
sutetotanuki
0
190
SREが取り組むデプロイ高速化 ─ Docker Buildを最適化した話
capytan
0
150
Featured
See All Featured
KATA
mclloyd
PRO
33
15k
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
0
100
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
0
67
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Prompt Engineering for Job Search
mfonobong
0
130
Google's AI Overviews - The New Search
badams
0
870
How to train your dragon (web standard)
notwaldorf
97
6.5k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
44k
Design in an AI World
tapps
0
100
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
400
Transcript
Data modelling and partitioning in Azure Cosmos DB (Azure Cosmos
DB でのデータ モデリングとパーティション分割)
Session's objectives
What is Azure Cosmos DB? Non-relational and horizontally scalable
What is Azure Cosmos DB? horizontally scalable
What is Azure Cosmos DB? non-relational
What is Azure Cosmos DB? non-relational and horizontally scalable
So is Azure Cosmos DB suitable for relational workloads?
Let's look at a concrete example
Identifying the operations we have to serve
Now let's implement this model on Azure Cosmos DB!
Starting with the Customer entity
Starting with the Customer entity
To embed or to reference?
To embed or to reference? - - - - -
-
Our first entity: Customer
Customer customers PK: ?
What is partitioning?
What is partitioning? logical partitions
What is partitioning? Andrew Theo Mark Tim Deborah Luis
What is partitioning? Max size: 20 GB Max size: 2
MB
What is partitioning?
What is partitioning?
What is partitioning?
What is partitioning? Andrew Theo Mark Tim Deborah Luis SELECT
* FROM c WHERE c.username = 'Mark' our partition key
What is partitioning? Andrew Theo Mark Tim Deborah Luis SELECT
* FROM c WHERE c.favoriteColor = 'orange' ?
Choosing a partition key for customers customers PK: ?
Choosing a partition key for customers customers PK: ?
Choosing a partition key for customers customers PK: id
Choosing a partition key for customers customers PK: id
Next: product categories
Product categories
Product categories productCategories PK: ?
Product categories productCategories PK: ? SELECT * FROM c
Product categories productCategories PK: type
Next: product tags
Product tags
Product tags productTags PK: ?
Product tags productTags PK: ?
Product tags productTags PK: type
Next: products
Products
Products
Products products PK: ?
Products products PK: ? CategoryA CategoryC CategoryB SELECT * FROM
c WHERE c.categoryId = 'CategoryA'
Products products PK: categoryId category name? tag names?
Products: how to return category and tag names? products SELECT
* FROM c WHERE c.categoryId = 'CategoryA' productCategories SELECT c.name FROM c WHERE c.id = 'CategoryA' productTags SELECT * FROM c WHERE c.id IN ('<tagId1>', '<tagId2>', '<tagId3>')
Introducing denormalization
Products: denormalizing category and tag names products PK: categoryId
Products: keeping everything in sync productCategories productTags products
Cosmos DB's change feed
Products: keeping everything in sync productCategories productTags products
Next: sales orders
Sales orders
Sales orders
Sales orders salesOrders PK: ?
Sales orders salesOrders PK: ?
Sales orders salesOrders PK: ? CustomerA CustomerC CustomerB SELECT *
FROM c WHERE c.customerId = 'CustomerA'
Sales orders salesOrders PK: customerId
Sales orders salesOrders PK: customerId customers PK: id
Mixing entities in the same container?
Sales orders salesOrders PK: customerId customers PK: id
Sales orders: mixing with customers customers PK: id
Sales orders: mixing with customers customers PK: customerId
Sales orders: mixing with customers customers PK: customerId
Sales orders: mixing with customers CustomerA CustomerC CustomerB customer sales
orders customers PK: customerId
Sales orders customers PK: customerId SELECT * FROM c WHERE
c.customerId = 'CustomerA' AND c.type = 'salesOrder'
Sales orders customers PK: customerId
Denormalizing the count of sales orders per customer
Denormalizing the count of sales orders per customer
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB customer sales orders customers PK: customerId
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB update the customer add a sales order customers PK: customerId
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB update the customer add a sales order
Sales orders customers PK: customerId SELECT * FROM c WHERE
c.type = 'customer' ORDER BY c.salesOrderCount DESC
Our final design customers PK: customerId productCategories PK: type productTags
PK: type products PK: categoryId
Our final design, optimized! customers PK: customerId productMeta PK: type
products PK: categoryId
Key takeaways
Going further https://docs.microsoft.com/azure/cosmos-db/modeling-data https://docs.microsoft.com/azure/cosmos-db/how-to-model-partition-example https://devblogs.microsoft.com/cosmosdb/data-modeling-and-partitioning-for-relational-workloads/ https://github.com/AzureCosmosDB/labs/blob/master/readme.md https://github.com/AzureCosmosDB/labs/blob/master/decks/Data-Modeling.pptx