Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[第2回 Azure Cosmos DB 勉強会] Data modelling and pa...
Search
SATO Naoki (Neo)
September 13, 2020
Technology
0
890
[第2回 Azure Cosmos DB 勉強会] Data modelling and partitioning in Azure Cosmos DB (Azure Cosmos DB でのデータモデリングとパーティション分割)
https://satonaoki.wordpress.com/2020/09/13/jcdug-cosmos-db-data-modeling/
SATO Naoki (Neo)
September 13, 2020
Tweet
Share
More Decks by SATO Naoki (Neo)
See All by SATO Naoki (Neo)
Build enterprise-grade AI agents with Azure AI Agent Service
satonaoki
1
200
Microsoft Build 2024 Updates
satonaoki
0
250
LLMOps with Azure Machine Learning prompt flow
satonaoki
1
670
マルチクラウド時代の企業における生成AIとデータベースの関係 (Oracle Technology Day)
satonaoki
0
830
Microsoft Copilot, your everyday AI companion (Machine Learning 15minutes! Broadcast #82)
satonaoki
0
1.2k
Microsoft Build 2023 Updates – Copilot Stack and Azure OpenAI Service (Machine Learning 15minutes! Broadcast #78)
satonaoki
2
1.1k
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
satonaoki
1
1k
30分でわかるマイクロサービスアーキテクチャ 第2版
satonaoki
9
6.7k
[Machine Learning 15minutes! Broadcast #67] Azure AI - Build 2022 Updates and more...
satonaoki
0
340
Other Decks in Technology
See All in Technology
Cursor AgentによるパーソナルAIアシスタント育成入門―業務のプロンプト化・MCPの活用
os1ma
14
4.9k
DETR手法の変遷と最新動向(CVPR2025)
tenten0727
2
1.4k
より良い開発者体験を実現するために~開発初心者が感じた生成AIの可能性~
masakiokuda
0
200
Ops-JAWS_Organizations小ネタ3選.pdf
chunkof
2
170
30代からでも遅くない! 内製開発の世界に飛び込み、最前線で戦うLLMアプリ開発エンジニアになろう
minorun365
PRO
11
3.3k
ここはMCPの夜明けまえ
nwiizo
28
9.9k
OpenLane-V2ベンチマークと代表的な手法
kzykmyzw
0
100
サーバレス、コンテナ、データベース特化型機能をご紹介。CloudWatch をもっと使いこなそう!
o11yfes2023
0
180
Porting PicoRuby to Another Microcontroller: ESP32
yuuu
4
440
LiteXとオレオレCPUで作る自作SoC奮闘記
msyksphinz
0
710
Would you THINK such a demonstration interesting ?
shumpei3
1
220
Automatically generating types by running tests
sinsoku
2
3.4k
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Facilitating Awesome Meetings
lara
54
6.3k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Optimising Largest Contentful Paint
csswizardry
36
3.2k
Site-Speed That Sticks
csswizardry
5
500
Become a Pro
speakerdeck
PRO
27
5.3k
Embracing the Ebb and Flow
colly
85
4.6k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.6k
Code Reviewing Like a Champion
maltzj
522
40k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
104
19k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
Transcript
Data modelling and partitioning in Azure Cosmos DB (Azure Cosmos
DB でのデータ モデリングとパーティション分割)
Session's objectives
What is Azure Cosmos DB? Non-relational and horizontally scalable
What is Azure Cosmos DB? horizontally scalable
What is Azure Cosmos DB? non-relational
What is Azure Cosmos DB? non-relational and horizontally scalable
So is Azure Cosmos DB suitable for relational workloads?
Let's look at a concrete example
Identifying the operations we have to serve
Now let's implement this model on Azure Cosmos DB!
Starting with the Customer entity
Starting with the Customer entity
To embed or to reference?
To embed or to reference? - - - - -
-
Our first entity: Customer
Customer customers PK: ?
What is partitioning?
What is partitioning? logical partitions
What is partitioning? Andrew Theo Mark Tim Deborah Luis
What is partitioning? Max size: 20 GB Max size: 2
MB
What is partitioning?
What is partitioning?
What is partitioning?
What is partitioning? Andrew Theo Mark Tim Deborah Luis SELECT
* FROM c WHERE c.username = 'Mark' our partition key
What is partitioning? Andrew Theo Mark Tim Deborah Luis SELECT
* FROM c WHERE c.favoriteColor = 'orange' ?
Choosing a partition key for customers customers PK: ?
Choosing a partition key for customers customers PK: ?
Choosing a partition key for customers customers PK: id
Choosing a partition key for customers customers PK: id
Next: product categories
Product categories
Product categories productCategories PK: ?
Product categories productCategories PK: ? SELECT * FROM c
Product categories productCategories PK: type
Next: product tags
Product tags
Product tags productTags PK: ?
Product tags productTags PK: ?
Product tags productTags PK: type
Next: products
Products
Products
Products products PK: ?
Products products PK: ? CategoryA CategoryC CategoryB SELECT * FROM
c WHERE c.categoryId = 'CategoryA'
Products products PK: categoryId category name? tag names?
Products: how to return category and tag names? products SELECT
* FROM c WHERE c.categoryId = 'CategoryA' productCategories SELECT c.name FROM c WHERE c.id = 'CategoryA' productTags SELECT * FROM c WHERE c.id IN ('<tagId1>', '<tagId2>', '<tagId3>')
Introducing denormalization
Products: denormalizing category and tag names products PK: categoryId
Products: keeping everything in sync productCategories productTags products
Cosmos DB's change feed
Products: keeping everything in sync productCategories productTags products
Next: sales orders
Sales orders
Sales orders
Sales orders salesOrders PK: ?
Sales orders salesOrders PK: ?
Sales orders salesOrders PK: ? CustomerA CustomerC CustomerB SELECT *
FROM c WHERE c.customerId = 'CustomerA'
Sales orders salesOrders PK: customerId
Sales orders salesOrders PK: customerId customers PK: id
Mixing entities in the same container?
Sales orders salesOrders PK: customerId customers PK: id
Sales orders: mixing with customers customers PK: id
Sales orders: mixing with customers customers PK: customerId
Sales orders: mixing with customers customers PK: customerId
Sales orders: mixing with customers CustomerA CustomerC CustomerB customer sales
orders customers PK: customerId
Sales orders customers PK: customerId SELECT * FROM c WHERE
c.customerId = 'CustomerA' AND c.type = 'salesOrder'
Sales orders customers PK: customerId
Denormalizing the count of sales orders per customer
Denormalizing the count of sales orders per customer
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB customer sales orders customers PK: customerId
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB update the customer add a sales order customers PK: customerId
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB update the customer add a sales order
Sales orders customers PK: customerId SELECT * FROM c WHERE
c.type = 'customer' ORDER BY c.salesOrderCount DESC
Our final design customers PK: customerId productCategories PK: type productTags
PK: type products PK: categoryId
Our final design, optimized! customers PK: customerId productMeta PK: type
products PK: categoryId
Key takeaways
Going further https://docs.microsoft.com/azure/cosmos-db/modeling-data https://docs.microsoft.com/azure/cosmos-db/how-to-model-partition-example https://devblogs.microsoft.com/cosmosdb/data-modeling-and-partitioning-for-relational-workloads/ https://github.com/AzureCosmosDB/labs/blob/master/readme.md https://github.com/AzureCosmosDB/labs/blob/master/decks/Data-Modeling.pptx