Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ふりかえりには、ストレスマネージメントの考え方が役に立つ!
Search
scrummasudar
December 10, 2020
Science
2
860
ふりかえりには、ストレスマネージメントの考え方が役に立つ!
分散アジャイルチームについて考える会で発表した内容です。
https://distributed-agile-team.connpass.com/event/195970/
scrummasudar
December 10, 2020
Tweet
Share
More Decks by scrummasudar
See All by scrummasudar
【ふりかえりワークショップ】Tryを決めるだけじゃない!感情にフォーカスした、ふりかえりを体験しよう!
scrummasudar
0
660
アジャイルコーチを名乗る覚悟 -あなたは何によって憶えられたいか?-
scrummasudar
4
2k
ゲームテストの基礎-ISTQBゲームテストシラバスの解説-
scrummasudar
1
650
アジャイル開発における QAの役割と仕事の方法
scrummasudar
0
180
動くプロダクトを軸にしたプロジェクトマネージメント〜スプリントレビューの活用方法〜
scrummasudar
0
1.8k
頻繁に感じる問題に 対処していますか?
scrummasudar
1
1k
頻繁に感じている問題に対処できていますか?
scrummasudar
0
170
HowToDevelopInLargeAndComplex
scrummasudar
0
1.2k
OrganizationalChange
scrummasudar
3
1.8k
Other Decks in Science
See All in Science
データベース03: 関係データモデル
trycycle
PRO
1
320
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
130
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
130
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
130
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
150
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
220
凸最適化からDC最適化まで
santana_hammer
1
340
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
学術講演会中央大学学員会府中支部
tagtag
0
340
Featured
See All Featured
Designing for Performance
lara
610
69k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
85
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
30
Code Review Best Practice
trishagee
74
19k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.3k
Skip the Path - Find Your Career Trail
mkilby
0
23
GitHub's CSS Performance
jonrohan
1032
470k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
How to Talk to Developers About Accessibility
jct
1
82
エンジニアに許された特別な時間の終わり
watany
105
220k
Writing Fast Ruby
sferik
630
62k
The agentic SEO stack - context over prompts
schlessera
0
550
Transcript
૿ాݠଠ ;Γ͔͑Γʹɺ ετϨεϚωʔδϝϯτͷߟ͑ํ͕ ʹཱͭʂ ࢄΞδϟΠϧνʔϜʹ͍ͭͯߟ͑Δձ
ετϨεͬͯɺීஈײ͡·͢ʜΑͶʁ
ࣄݱͷzυυυυυz
ΪϡΪϡͷຬһిं
ͤ·Γ͘Δೲظʜ
ɺετϨεͱ্ख͖͘߹͑ͳ͔ͬͨʜ ɺճٳΈͷ
ετϨεϚωʔδϝϯτͱͷग़ձ͍ ྟচ৺ཧ࢜ͷํ͔Βଟ͘ͷ͜ͱΛֶΜͩ
z;Γ͔͑Γzʹ׆͔ͤΔ͔ʂʁ w ετϨεϚωʔδϝϯτͷྲྀΕ w ؾͮ͘ w έΞ͢Δ w ༧͢Δ
ࣗݾհ w ૿ాɹݠଠ w ͓ࣄ୳͠த w ίϛϡχςΟ w εΫϥϜಓؔ w
ΞδϟΠϧϥδΦ
૿ాݠଠ ;Γ͔͑Γʹɺ ετϨεϚωʔδϝϯτͷߟ͑ํ͕ ʹཱͭʂ ࢄΞδϟΠϧνʔϜʹ͍ͭͯߟ͑Δձ ࠶ܝ
ετϨεͬͯͳΜͩΖ͏ʁ
ετϨεͱ w ϋϯεɾηϦΤͷετϨεֶઆΛͱʹհ w ετϨε w ֎෦ڥ͔ΒͷܹʹΑͬͯى͜ΔΈʹର͢ΔඇಛҟతԠ w ετϨοαʔ w
ετϨεΛҾ͖ى͜͢֎෦ڥ͔Βͷܹ w Ұൠతʹར༻͞ΕΔʮετϨεʯ͜ͷ༰Λࢦ͍ͯ͠Δ w ຊൃදͰ͍͚͠·ͤΜ IUUQTXXXFIFBMUIOFUNIMXHPKQJOGPSNBUJPOEJDUJPOBSZIFBSUZLIUNM IUUQTFOXJLJQFEJBPSHXJLJ)BOT@4FMZF
ετϨεͷྨᶃ w ཧత w ॵ͍ɺפ͍ɺᚶ͍͠ɺ͏Δ͍͞ w Խֶత w Խֶ࣭ͷ͍ɺ৯ఴՃ w
ੜత w ΠϧεɺίϩφɺՖค w ৺ཧత w ෆ҆ɺΠϥΠϥɺΈ w ҰൠతʹετϨεͱ Πϝʔδ͞Ε͍͢ͷίνϥ
ετϨεͷྨᶄ w Ϧνϟʔυɾϥβϧεͷྨ w ϥΠϑΠϕϯτ • ਓੜʹ͓͚Δେ͖ͳసɻେ͖͘ӨڹΛ༩͑ͨग़དྷࣄɻܶతͳग़དྷࣄɻ w σΠϦʔϋοεϧ •
ৗࣄੜ׆ΛૹΔ্Ͱසൟʹମݧ͢Δෆ༇շͳࣄฑ৺ࣄɻ
ετϨεͷྨᶄʙϥΠϑΠϕϯτʙ
ετϨεͷྨᶄʙσΠϦʔϋοεϧʙ
ετϨεͷྨᶄʙͲͪΒʹؾΛ͚ͭΔ͖ʁʙ ϥΠϑΠϕϯτ σΠϦʔϋοεϧ Өڹ େ͖͍ খ͍͞ ظؒ Ұ࣌త ຫੑత ؾ͖ͮ͢͞
ؾ͖͍ͮ͢ ؾ͖ͮͮΒ͍
ετϨεͷྨᶄʙσΠϦʔϋοεϧʹҙʙ • ϥΠϑΠϕϯτΑΓɺ൱ఆతͳӨڹΛ༩͍͑͢ͱݴΘΕ͍ͯ·͢ɻ • ʑൃੜ͢ΔͷͰɺզຫͰղܾ͠ͳ͍…ɻ • খ͍͞ࣄ͕ଟ͍ͷͰɺݟಀ͕ͪ͠…ɻ • ΒͣΒͣͷ͏ͪʹੵ͠ɺෆௐͷݪҼʹ…ɻ
ϫʔΫ
ετϨεʹؾ͍ͮͯ·͔͢ʁ w σΠϦʔϋοεϧʹ֘͢ΔετϨεΛॻ͖ग़ͯ͠ΈΑ͏ʂ w ࣄʹؔ࿈͢Δͷத৺ʹʂ w ͚͠Εɺৗੜ׆ͷ༰Ͱ0, w ࣌ؒɺؒ
;Γ͔͑ΓΛ;Γ͔͑Ζ͏ᶃ
σΠϦʔϋοεϧɺݟಀͯ͠·ͤΜ͔ʁ w ʮσΠϦʔϋοεϧ͕ɺશ͘ࢥ͍͔ͭͳ͍ʜʯͱͳ͍ͬͯ·ͤΜ͔ʁ w σΠϦʔϋοεϧʹॻ͍ͨ༰Λɺ;Γ͔͑ΓͰ͍͑ͯ·͔͢ʁ w ੵΈॏͳͬͯɺͭΒ͍ঢ়گʹؕͬͯ·ͤΜ͔ʁ
ετϨεΛέΞ͢Δ ೝฤ
ʮഭΓ͘ΔೲظʯΛͲ͏ड͚औΓ·͔͢ʁ ͜Ε͕ऴΘΕɺҰଉ͚ͭΔʂ ͍ʜɻࣄ͕ऴΘΒͳ͍ʜ ্࢘ʹ૬ஊ͢Εɺ ظΛͣΒͤΔ͔ʜɻ ͜ͷࣄΛΓ͖Εɺ ৽ͨͳνϟϨϯδΛୡʂ
ετϨεͷೋ໘ੑ w ϚʔςΟϯɾηϦάϚϯͷϙδςΟϒ৺ཧֶ w ࣬පϞσϧ w ετϨε࣬පͷൃ͋Δ͍ɺ૿ѱҼࢠͱͯ͠ಇ͘ w Ϟσϧ w
ετϨε͕ਓؒͷͷݯ w Ұͭͷࣄʹରͯ͠ɺ྆໘ͷ؍Ͱଊ͑Δ͜ͱ͕ॏཁ
౷੍Մೳੑ w ͋Δঢ়ଶΛࣗͷҙࢤߦಈͰม͑ΒΕΔ͔Ͳ͏͔Λࣔ͢ w ౷੍ՄೳɿࣗͰͲ͏ʹ͔Ͱ͖Δɻม͑Δ͜ͱ͕Ͱ͖Δɻ w ౷੍ෆՄೳɿͲ͏ʹͳΒͳ͍ɻมԽͤͮ͞Β͍ɻ w ౷੍Մೳੑ͕͚Εɺग़དྷࣄΛετϨεϑϧʹײ͡Δ w
(FFSBOE.BJTFM ͷ࣮ݧ
༧ଌՄೳੑ w ༧ଌՄೳɿγϣοΫΛͭؒετϨε͍ɺγϣοΫͷఔ͍ w ྫ ࢿ֨ࢼݧɺब৬ɺఆୀ৬ɺ෩ʹΑΔࣗવࡂ w ༧ଌෆՄೳɿγϣοΫΛͭؒετϨεߴ͍ɺγϣοΫͷఔߴ͍ w ྫ
ςϩɺʹΑΔࣗવࡂ w ༧ଌ͕Ͱ͖Δͱɺࣄલ४උ৺ߏ͕͑Ͱ͖Δɻ ܹ͕དྷΔ·Ͱʹɺ͋ΔఔϦϥοΫεͰ͖Δɻ
;Γ͔͑ΓΛ;Γ͔͑Ζ͏ᶄ
ϫʔΫ
͍ͦͦ͜͠ͱʹཱ͔ͪͬͯ·ͤΜ͔ʁ w ϫʔΫͰॻ͍ͨσΠϦʔϋοεϧΛݟͯ͠Έ·͠ΐ͏ʂ w ౷੍ෆՄೳͳ͜ͱʹΠϥΠϥͯ͠·ͤΜ͔ʁ w ༧ଌෆՄೳͳ͜ͱʹ͍͗ͯ͢͠·ͤΜ͔ʁ w ࣌ؒɺؒ
χʔόʔͷفΓʙड͚ೖΕΔ͜ͱͷେ͞ʙ ਆΑɺ ม͑Δ͜ͱͷͰ͖Δͷʹ͍ͭͯɺ ͦΕΛม͑Δ͚ͩͷ༐ؾΛΘΕΒʹ༩͑ͨ·͑ɻ ม͑Δ͜ͱͷͰ͖ͳ͍ͷʹ͍ͭͯɺ ͦΕΛड͚͍ΕΔ͚ͩͷྫྷ੩͞Λ༩͑ͨ·͑ɻ ͦͯ͠ɺ ม͑Δ͜ͱͷͰ͖Δͷͱɺม͑Δ͜ͱͷͰ͖ͳ͍ͷͱΛɺ ࣝผ͢ΔܙΛ༩͑ͨ·͑ɻ ϥΠϯϗʔϧυɾχʔόʔ
Ҿ༻IUUQIPNFJOUFSMJOLPSKQdTVOPZPTIJQPFUSZQ@OJFCVISIUN
ετϨεΛέΞ͢Δ ߦಈฤ
ίʔϐϯά w ίʔϐϯάͱɺzετϨεʹରॲ͢Δzͱ͍͏͜ͱ w ετϨεঢ়ଶΛऑΊͨΓɺͳͨ͘͠Γ͢Δ͜ͱΛతͱ͢Δɻ w ྨํ๏ͱͯ͠ɺ ʮযܕίʔϐϯάʯͱʮಈযܕίʔϐϯάʯ͕ଘࡏ͢Δɻ w Ϧνϟʔυɾϥβϧεͷઆ
Ҿ༻IUUQTXXXFIFBMUIOFUNIMXHPKQJOGPSNBUJPOEJDUJPOBSZFYFSDJTFZTIUNM
যܕίʔϐϯά w ΛมԽͤͨ͞Γɺආ͚ͨΓͰ͖Δํ๏Λݟ͚ͭΔख๏ w ετϨεΛͳͤ͘Δ͔Ͳ͏͔Λߟ͑Δ w ͷݪҼΛߟ͑ɺղܾʹ͔ͬͯߦಈ͢Δ w ग़དྷࣄঢ়گʹ͍ͭͯௐͨΓɺܦݧऀʹΛௌ͍ͨΓ͢Δ w
ղܾํ๏Λߟ͑ͨޙɺղܾखॱͷܭըཱͯΔ
ಈযܕίʔϐϯά w ಈΛ͋ΒΘʹ͠ɺϦϥοΫε͢Δ͜ͱΛతͱ͢Δख๏ w ղܾఘΊɺߟ͑Δ͜ͱҰ୴Ίͯؾʹ͠ͳ͍Α͏ʹ͢Δ w ग़དྷࣄঢ়گʹ͍ͭͯɺ٬؍తɺָ؍తʹߟ͑ΒΕΔΑ͏ʹ͢Δ w Έͳ͞Μɺҙ֎ͱ͍ͬͯ·͢ʂ w
Δ͖͜ͱ͕ଟ͘ͳΔͱɺͳ͔ͥͬͯ͠·͏আ w ࣄ͕ऴΘΒͳ͍͚ͲɺͱΓ͋͑ͣʮҿΈʹߦ͜͏ͥʂʯͱډञ
ίʔϐϯάͷ͍͚ w ·ͣܰྔͳಈযܕίʔϐϯάͰϦϥοΫεʂ w ౖΓɺෆ҆ͱ͍ͬͨؾ࣋ͪͷߴͿΓɺମͷڵฃঢ়ଶΛ͑ΔͨΊʹɺ ·ͣɺϦϥοΫε͢Δඞཁ͕͋Δ w ྫྷ੩Ͱͳ͍ঢ়ଶͰɺॏ͍ͨযܕίʔϐϯάʹऔΓΜͰɺ ݁Ռͱͯ͠औΓΉ͜ͱ͕Ͱ͖ͳ͍ঢ়ଶʹ
;Γ͔͑ΓΛ;Γ͔͑Ζ͏ᶅ
ղܾʹྗ͍͗ͯ͢͠·ͤΜ͔ʁ w ਓͷঢ়ଶʹ͠Α͏ʂ w ղܾͷखॱܭը͕໌ྎʹͳͬͨͱͯ͠ɺ࣮ࢪ͢Δͷਓʂ w ಛʹൃੜͨ͠ʹܞΘ͍ͬͯͨਓɺෆ҆ޙչͰɺྫྷ੩Ͱͳ͍ w ;Γ͔͑ΓͰղܾͷํ๏͕ݟ͔ͭΒͳ͘ͱɺ ಈযܕίʔϐϯάΛ͍ɺνʔϜΛීஈͷঢ়ଶʹ͢͜ͱͰɺ
;Γ͔͑ΓͷޮՌݟࠐΊΔ
ετϨεΛ༧͢Δ
ରॲํ๏ΛࣗͰࣄલʹ͓ͬͯ͜͏ʂ w ίʔϐϯάɺಥવࢥ͍ͭ͘ͷͰͳ͍ w ීஈ͔Βࣗͷରॲ๏Λ͓ͬͯ͘͜ͱͰɺ͍͟ͱͳͬͨͱ͖ʹ׆༻Ͱ͖Δ w ʮಈযܕίʔϐϯάɺࣄલʹݸϦετΞοϓ͓ͯ͘͠ͱΑ͍ʯ ͱݴΘΕ͍ͯ·͢CZྟচ৺ཧ࢜ͷઌੜ w ίϧνκʔϧ
ετϨε࣭ Λফඅ͢ΔӡಈɺετϨεੑΛߴΊΔͷͰɺ ݈શͳମ࡞Γେࣄ
ϫʔΫ
ಈযܕίʔϐϯάΛॻ͖ग़ͦ͏ʂ w ࣌ؒʹࢥ͍ͭ͘ݶΓͷରॲ๏Λॻ͖ग़ͦ͏ʂ w ʮ͍ͷ͕৯ΔʯΑΓɺ ʮϠϚβΩͷେ͖ͳπΠϯγϡʔ৯Δʯͷํ͕ϕλʔ w ࣌ؒɺؒ
͓ΘΓʹ
ଞͷͷֶͼΛ׆͔͢ͱੈք͕͕Δ w ͨ·ͨ·ਂ͘ετϨεϚωʔδϝϯτΛֶͿػձ͕͋ͬͨͷͰɺ l;Γ͔͑Γzʹ׆͔ͤΔͷͰͳ͍͔ͱߟ͑ͨ w *5ʹؔ࿈͠ͳ͍Ͱɺਂֶ͘ΜͰ͍Δ͕ɺΈͳ͞Μʹ͋Δʂ