train_l) SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='linear', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) predicted = svc.predict(test_df) predicted array([1, 5, 0, ..., 7, 8, 3]) import sklearn.metrics as metrics metrics.confusion_matrix(test_l, predicted) array([[53, 0, 0, ..., 0, 0, 0], [ 0, 42, 0, ..., 0, 0, 0], [ 0, 0, 41, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 47, 0, 1], [ 0, 0, 0, ..., 0, 36, 0], [ 0, 0, 0, ..., 0, 1, 45]]) ෆศͳϙΠϯτ આ໌తมͰࣅͨΑ͏ͳ ࢦఆΛ܁Γฦ͢ඞཁ͕