Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
生成AI、実際どう? - ニーリーの場合
Search
Nealle
July 28, 2025
Programming
0
1k
生成AI、実際どう? - ニーリーの場合
2025/7/31
https://find.connpass.com/event/360680/
生成AI、実際どう?【現場エンジニアたちのぶっちゃけトークミートアップ】
Nealle
July 28, 2025
Tweet
Share
More Decks by Nealle
See All by Nealle
Startup Tech Night ニーリーのAI活用
nealle
0
67
モビリティSaaSにおけるデータ利活用の発展
nealle
1
880
Pythonに漸進的に型をつける
nealle
1
200
品質ワークショップをやってみた
nealle
0
1.4k
DevHRに全部賭けろ
nealle
0
230
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
nealle
1
2.5k
AI OCR API on Lambdaを Datadogで可視化してみた
nealle
0
390
“いい感じ“な定量評価を求めて - Four Keysとアウトカムの間の探求 -
nealle
4
18k
ニーリーにおけるプロダクトエンジニア
nealle
0
1.4k
Other Decks in Programming
See All in Programming
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
660
PostgreSQLで手軽にDuckDBを使う!DuckDB&pg_duckdb入門/osc25hi-duckdb
takahashiikki
0
250
CSC307 Lecture 02
javiergs
PRO
1
760
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
250
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
39k
Grafana:建立系統全知視角的捷徑
blueswen
0
290
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
310
Vibe codingでおすすめの言語と開発手法
uyuki234
0
180
PC-6001でPSG曲を鳴らすまでを全部NetBSD上の Makefile に押し込んでみた / osc2025hiroshima
tsutsui
0
210
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
170
これならできる!個人開発のすゝめ
tinykitten
PRO
0
150
TestingOsaka6_Ozono
o3
0
270
Featured
See All Featured
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
880
Designing for Performance
lara
610
70k
Code Review Best Practice
trishagee
74
19k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Color Theory Basics | Prateek | Gurzu
gurzu
0
180
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
700
Everyday Curiosity
cassininazir
0
120
A Modern Web Designer's Workflow
chriscoyier
698
190k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Documentation Writing (for coders)
carmenintech
77
5.2k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Transcript
2025.07.31 生成AI、実際どう?【現場エンジニアたちのぶっちゃけトークミートアップ】 株式会社ニーリー 宮後 啓介 @miya10kei NEALLE 1 生成AI、実際どう? 〜ニーリーにおける生成AI活用の進め方と活用事例〜
2023年にニーリーにジョイン 昨年までSREリードとしてサービスの信頼性やアジリティ向上の施 策を実施。2025年よりプロダクト/事業部門での生成AI活用を推進 するチームを立ち上げ活動中。 2 自己紹介 @miya10kei 株式会社ニーリー プラットフォーム開発G プロダクトAI開発
リーダー Keisuke Miyaushiro 宮後 啓介
3 プロダクト紹介 BtoBtoCのVertical SaaS「Park Direct」を運営 モビリティプラットフォームを目指す
4 1. 生成AIの活用事情 2. 生成AIの活用事例 3. 生成AI、実際どう? 目次
5 1. 生成AIの活用事情
6 生成AIの活用事情 ~ これまで ~ 生成AI活用のさらなる加速 • 価値創造/生産性向上の両面で生成AIの活用を加速させていく • 生成AI活用のカルチャー・モメンタムの醸成
6 2025年下期 2024年下期 2025年上期 生成AIの利用開始 • 生成AIの利用を開始し、チャットボットをPoCで運用 • 生成AI活用についてテーマ発掘 生成AI活用の土台作り • 事業/開発部門での生成AIの本格的な活用を開始 • 価値創造に向けたチームを組成
7 生成AIの活用事情 ~ これから~ 目的 手段 手段 手段 手段 手段
手段 手段 手段 生成AI 目的 目的 目的 目的 目的 目的 目的 目的 (今まで) Issueドリブンな開発 (これから) 生成AIの活用 手段の目的化を恐れず、生成AI ファーストでの目的達成を考える 課題解決という目的達成のために必 要なことを何でもやっていく
8 📣 宣伝 ~ ニーリーのエンジニア組織 ~ 📣
9 生成AIの活用事情 ~ 体制 ~ 全社横断での生成AIの活用を推進するチーム • Google Workspace with
Geminiなどの全社で共通して利用する生成AI ツールの整備 • 生成AIを利用する上でセキュリティ等のルール策定 Corporate Engineer プロダクト AI開発 AI Guild 開発部門の生産性向上を推進するグループ • 領域(既存プロダクト開発/SRE/テスト)毎にメンバーを選出し、 先頭を走ってイネーブリングしていく • Guild外のメンバーも個人個人では生成AIを活用してく 価値 創造 生産性 向上 プロダクト/事業部門の業務に対して生成AIの導入を推進するチーム • プロダクト:価値創造 • 事業部門の業務:生産性向上
10 2. 生成AIの活用事例
目視による必要書類の確からしさと、内容確認を生 成AIで自動化! 11 生成AIの活用事例 ~ プロダクト/事業部門の業務での活用 ~ 必要書類のAI OCR この画像に記載の
情報を読み取って Gemini この画像には以下の情報 が記載されています。... コールセンター通話のAI要約 お客様との通話を生成AIで自動要約することで、手 動での記録業務をゼロに! 会話の 文字おこし お客様 オペレーター 契約変更の手続き 方法は...です。 契約変更について 教えてください? 要約 その他、AIチャットボット、コールセンターガイダンス音声、勉強会動画要約などでも生成AIを活用中
その他、AIコードレビュー、Code2Docs、BackendAPIのMCP化などを実施しています MCP経由でドメイン知識にアクセスさせること で、生成コードの質を向上! 12 生成AIの活用事例 ~ 開発部門での活用 ~ AIコーディングエージェント x
ドメイン知識 AIコーディングエージェント x デザイン 各種MCPを活用して、Design2Codeを実現し、爆 速開発! MCP デザイン (Figma MCP) デザインチェック (Playwright MCP) Webページ AIコーディング エージェント ナレッジベース Bedrock MCP ドメイン知識 (Confluence) Backendコード AIコーディング エージェント VectorDB (OpenSearch) 蓄積 参照 デザインに 沿って実装して XXを実装して デザインシステム (独自MCP)
13 3. 生成AI、実際どう?
14 生成AI、実際どう?~ プロダクト/事業部門の業務での活用 ~ 大きなインパクトをもたらすには大胆な変化が必要 • 既存の業務の置き換えだけでは効果が限定的になる • 大きなインパクトに繋げるには、生成AIファーストに業務を変化させる必要がある インシデントリスクとのバランスを考える必要がある
• ハルシネーションリスクはどこまでもいっても付きまとう • 社内利用に閉じていても、間接的にインシデントを引き起こす可能性があることに注意する 適切なフィードバックループの設計が必要 • 精度は決して100%にならないので、継続的な精度改善は必須 • 適切な人が自然に生成AIの回答に対して、フィードバックをおこなえるような設計が必要
15 生成AI、実際どう? ~ 開発部門での活用 ~ 個々の開発スタイルに合わせた柔軟性な導入が必要 • 個々の開発スタイルでツール導入の感じとり方が異なるので、柔軟に選択できる必要がある ◦ 例:AIコードレビューのタイミング、指摘内容、コメント方法など
利用ツールは一定揃えた方がナレッジ共有は進みやすい • 利用ツールが多岐に渡り、個々の制限によって活用方法に違いが生まれる ◦ 利用ツール:GitHubCopilot/Cursor/ClaudeCode/GeminiCLI/Devin ドキュメント ↔ コード のいい感じの仕組みづくりをおこないたい • 単発でのDocs2Code、Code2Docsはおこなえている • 継続的なフィードバックループを回すための仕組みづくりをしていきたい
ニーリー採用情報など
Thank you 17