Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
生成AI、実際どう? - ニーリーの場合
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Nealle
July 28, 2025
Programming
0
1.1k
生成AI、実際どう? - ニーリーの場合
2025/7/31
https://find.connpass.com/event/360680/
生成AI、実際どう?【現場エンジニアたちのぶっちゃけトークミートアップ】
Nealle
July 28, 2025
Tweet
Share
More Decks by Nealle
See All by Nealle
AI巻き込み型コードレビューのススメ
nealle
1
150
Startup Tech Night ニーリーのAI活用
nealle
0
76
モビリティSaaSにおけるデータ利活用の発展
nealle
1
920
Pythonに漸進的に型をつける
nealle
1
210
品質ワークショップをやってみた
nealle
0
1.4k
DevHRに全部賭けろ
nealle
0
240
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
nealle
1
2.5k
AI OCR API on Lambdaを Datadogで可視化してみた
nealle
0
400
“いい感じ“な定量評価を求めて - Four Keysとアウトカムの間の探求 -
nealle
4
18k
Other Decks in Programming
See All in Programming
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
120
CSC307 Lecture 09
javiergs
PRO
1
830
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
5
380
CSC307 Lecture 06
javiergs
PRO
0
680
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.8k
Data-Centric Kaggle
isax1015
2
770
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6k
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.5k
Oxlintはいいぞ
yug1224
5
1.3k
Featured
See All Featured
Fireside Chat
paigeccino
41
3.8k
Designing for humans not robots
tammielis
254
26k
The Language of Interfaces
destraynor
162
26k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Mobile First: as difficult as doing things right
swwweet
225
10k
30 Presentation Tips
portentint
PRO
1
210
Become a Pro
speakerdeck
PRO
31
5.8k
Building Adaptive Systems
keathley
44
2.9k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
410
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Transcript
2025.07.31 生成AI、実際どう?【現場エンジニアたちのぶっちゃけトークミートアップ】 株式会社ニーリー 宮後 啓介 @miya10kei NEALLE 1 生成AI、実際どう? 〜ニーリーにおける生成AI活用の進め方と活用事例〜
2023年にニーリーにジョイン 昨年までSREリードとしてサービスの信頼性やアジリティ向上の施 策を実施。2025年よりプロダクト/事業部門での生成AI活用を推進 するチームを立ち上げ活動中。 2 自己紹介 @miya10kei 株式会社ニーリー プラットフォーム開発G プロダクトAI開発
リーダー Keisuke Miyaushiro 宮後 啓介
3 プロダクト紹介 BtoBtoCのVertical SaaS「Park Direct」を運営 モビリティプラットフォームを目指す
4 1. 生成AIの活用事情 2. 生成AIの活用事例 3. 生成AI、実際どう? 目次
5 1. 生成AIの活用事情
6 生成AIの活用事情 ~ これまで ~ 生成AI活用のさらなる加速 • 価値創造/生産性向上の両面で生成AIの活用を加速させていく • 生成AI活用のカルチャー・モメンタムの醸成
6 2025年下期 2024年下期 2025年上期 生成AIの利用開始 • 生成AIの利用を開始し、チャットボットをPoCで運用 • 生成AI活用についてテーマ発掘 生成AI活用の土台作り • 事業/開発部門での生成AIの本格的な活用を開始 • 価値創造に向けたチームを組成
7 生成AIの活用事情 ~ これから~ 目的 手段 手段 手段 手段 手段
手段 手段 手段 生成AI 目的 目的 目的 目的 目的 目的 目的 目的 (今まで) Issueドリブンな開発 (これから) 生成AIの活用 手段の目的化を恐れず、生成AI ファーストでの目的達成を考える 課題解決という目的達成のために必 要なことを何でもやっていく
8 📣 宣伝 ~ ニーリーのエンジニア組織 ~ 📣
9 生成AIの活用事情 ~ 体制 ~ 全社横断での生成AIの活用を推進するチーム • Google Workspace with
Geminiなどの全社で共通して利用する生成AI ツールの整備 • 生成AIを利用する上でセキュリティ等のルール策定 Corporate Engineer プロダクト AI開発 AI Guild 開発部門の生産性向上を推進するグループ • 領域(既存プロダクト開発/SRE/テスト)毎にメンバーを選出し、 先頭を走ってイネーブリングしていく • Guild外のメンバーも個人個人では生成AIを活用してく 価値 創造 生産性 向上 プロダクト/事業部門の業務に対して生成AIの導入を推進するチーム • プロダクト:価値創造 • 事業部門の業務:生産性向上
10 2. 生成AIの活用事例
目視による必要書類の確からしさと、内容確認を生 成AIで自動化! 11 生成AIの活用事例 ~ プロダクト/事業部門の業務での活用 ~ 必要書類のAI OCR この画像に記載の
情報を読み取って Gemini この画像には以下の情報 が記載されています。... コールセンター通話のAI要約 お客様との通話を生成AIで自動要約することで、手 動での記録業務をゼロに! 会話の 文字おこし お客様 オペレーター 契約変更の手続き 方法は...です。 契約変更について 教えてください? 要約 その他、AIチャットボット、コールセンターガイダンス音声、勉強会動画要約などでも生成AIを活用中
その他、AIコードレビュー、Code2Docs、BackendAPIのMCP化などを実施しています MCP経由でドメイン知識にアクセスさせること で、生成コードの質を向上! 12 生成AIの活用事例 ~ 開発部門での活用 ~ AIコーディングエージェント x
ドメイン知識 AIコーディングエージェント x デザイン 各種MCPを活用して、Design2Codeを実現し、爆 速開発! MCP デザイン (Figma MCP) デザインチェック (Playwright MCP) Webページ AIコーディング エージェント ナレッジベース Bedrock MCP ドメイン知識 (Confluence) Backendコード AIコーディング エージェント VectorDB (OpenSearch) 蓄積 参照 デザインに 沿って実装して XXを実装して デザインシステム (独自MCP)
13 3. 生成AI、実際どう?
14 生成AI、実際どう?~ プロダクト/事業部門の業務での活用 ~ 大きなインパクトをもたらすには大胆な変化が必要 • 既存の業務の置き換えだけでは効果が限定的になる • 大きなインパクトに繋げるには、生成AIファーストに業務を変化させる必要がある インシデントリスクとのバランスを考える必要がある
• ハルシネーションリスクはどこまでもいっても付きまとう • 社内利用に閉じていても、間接的にインシデントを引き起こす可能性があることに注意する 適切なフィードバックループの設計が必要 • 精度は決して100%にならないので、継続的な精度改善は必須 • 適切な人が自然に生成AIの回答に対して、フィードバックをおこなえるような設計が必要
15 生成AI、実際どう? ~ 開発部門での活用 ~ 個々の開発スタイルに合わせた柔軟性な導入が必要 • 個々の開発スタイルでツール導入の感じとり方が異なるので、柔軟に選択できる必要がある ◦ 例:AIコードレビューのタイミング、指摘内容、コメント方法など
利用ツールは一定揃えた方がナレッジ共有は進みやすい • 利用ツールが多岐に渡り、個々の制限によって活用方法に違いが生まれる ◦ 利用ツール:GitHubCopilot/Cursor/ClaudeCode/GeminiCLI/Devin ドキュメント ↔ コード のいい感じの仕組みづくりをおこないたい • 単発でのDocs2Code、Code2Docsはおこなえている • 継続的なフィードバックループを回すための仕組みづくりをしていきたい
ニーリー採用情報など
Thank you 17