Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データベースの種類と特徴 / Explanation-of-database-types
Search
soudai sone
PRO
May 23, 2020
Technology
6
1.7k
データベースの種類と特徴 / Explanation-of-database-types
RDBとNOSQLの違いにフォーカスしながら種類と特徴について解説する資料です。
soudai sone
PRO
May 23, 2020
Tweet
Share
More Decks by soudai sone
See All by soudai sone
手を動かしながら学ぶデータモデリング - 論理設計から物理設計まで / Data modeling
soudai
PRO
31
7.7k
これからアウトプットする人たちへ - アウトプットを支える技術 / that support output
soudai
PRO
19
7.2k
コミュニティと計画的偶発性理論 - 出会いが人生を変える / Life-Changing Encounters
soudai
PRO
7
1.8k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
60
37k
変化に強いテーブル設計の勘所 / Table design that is resistant to changes
soudai
PRO
68
20k
抽象化をするということ - 具体と抽象の往復を身につける / Abstraction and concretization
soudai
PRO
51
25k
目の前の仕事と向き合うことで成長できる - 仕事とスキルを広げる / Every little bit counts
soudai
PRO
40
41k
ソフトウェアエンジニアとしてキャリアの螺旋を駆け上がる方法 - 経験と出会いが人生を変える / Career-Anchor-Drive
soudai
PRO
20
7k
新婚19年目から学ぶ夫婦円満の正しい歩き方 / Life is beautiful
soudai
PRO
12
4.9k
Other Decks in Technology
See All in Technology
Oracle Cloud Infrastructure IaaS 新機能アップデート 2025/09 - 2025/11
oracle4engineer
PRO
0
160
大企業でもできる!ボトムアップで拡大させるプラットフォームの作り方
findy_eventslides
1
820
AI駆動開発の実践とその未来
eltociear
0
120
品質のための共通認識
kakehashi
PRO
3
270
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
Database イノベーショントークを振り返る/reinvent-2025-database-innovation-talk-recap
emiki
0
220
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
260
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
1
280
2025年 開発生産「可能」性向上報告 サイロ解消からチームが能動性を獲得するまで/ 20251216 Naoki Takahashi
shift_evolve
PRO
1
200
生成AI活用の型ハンズオン〜顧客課題起点で設計する7つのステップ
yushin_n
0
230
生成AI時代におけるグローバル戦略思考
taka_aki
0
200
エンジニアリングをやめたくないので問い続ける
estie
2
1.2k
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Docker and Python
trallard
47
3.7k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
BBQ
matthewcrist
89
9.9k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
[SF Ruby Conf 2025] Rails X
palkan
0
540
Mobile First: as difficult as doing things right
swwweet
225
10k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Transcript
データベースの種類と特徴 RDBとNOSQLの違いを理解して正しく選ぶ tech.make #1
データベースを正しく選択すること What is it?
データベースを正しく選択すること ↓ プロジェクトの成功には必要不可欠 What is it?
データベースは 何を基準に選んでいますか? What is it?
データベースの選ぶには 特徴を掴むことが大切 What is it?
データベースの 種類と特徴を理解しよう! What is it?
1. 自己紹介 2. RDBとNOSQL 3. ACIDとCAP定理とBASE 4. アーキテクチャとデータモデル 5. まとめ
あじぇんだ
1. 自己紹介 2. RDBとNOSQL 3. ACIDとCAP定理とBASE 4. アーキテクチャとデータモデル 5. まとめ
あじぇんだ
自己紹介 曽根 壮大(35歳) Have Fun Tech LLC 代表社員 そ
ね たけ とも • 日本PostgreSQLユーザ会 勉強会分科会 担当 • 3人の子供がいます(長女、次女、長男) • 技術的にはWeb/LL言語/RDBMSが好きです • コミュニティが好き
None
本書きました
1. 自己紹介 2. RDBとNOSQL 3. ACIDとCAP定理とBASE 4. アーキテクチャとデータモデル 5. まとめ
あじぇんだ
RDBとNOSQL RDBとNOSQL
RDBとNOSQL ↓ なにが違うのか? RDBとNOSQL
RDBとNOSQL アーキテクチャ / データモデル マスタ型 P2P型 その他 リレーショナル MySQL PostgreSQL
ProxySQL pgpool-2 キーバリュー Redis Memcached Redis Cluster カラム指向 Redshift Cassandra ドキュメント指向 MongoDB グラフ指向 Neo4J InfiniteGraph ※代表的なデータベースのソフトウェアの抜粋
RDBとNOSQL アーキテクチャ / データモデル マスタ型 P2P型 その他 リレーショナル MySQL PostgreSQL
ProxySQL pgpool-2 キーバリュー Redis Memcached Redis Cluster カラム指向 Redshift Cassandra ドキュメント指向 MongoDB グラフ指向 Neo4J InfiniteGraph ※代表的なデータベースのソフトウェアの抜粋
リレーショナルデータモデルに 最適化されたデータベース 現在も多くのシステムで広く使われている RDBとNOSQL RDB
RDB以外のDBシステムの総称 (Not Only SQL) グラフデータモデルをはじめ、 RDBの不得意な分野に特化している RDBとNOSQL NOSQL
つまり、RDB以外はすべてNOSQL RDBとNOSQL
RDBと根本から違う RDBとNOSQL
• データモデルが違うのでデータ設計も違う • スケールアウトやスケールアップの有効性が違う • パフォーマンスチューニングの方法が違う • アプリケーションからの接続や扱い方が違う RDBとNOSQL RDBとNOSQLの違い
違いを捉えて特徴を掴む RDBとNOSQL
1. 自己紹介 2. RDBとNOSQL 3. ACIDとCAP定理とBASE 4. アーキテクチャとデータモデル 5. まとめ
あじぇんだ
違うを知るための考え方を知る ACIDとCAP定理とBASE
ACID ACIDとCAP定理とBASE
関連する複数の処理を 一つの処理単位にまとめて管理する トランザクション処理に 求められる4つの特性 ACIDとCAP定理とBASE ACID
• 原子性(Atomicity) • 一貫性(Consistency) • 独立性(Isolation) • 永続性(Durability) ACIDとCAP定理とBASE ACID
• 原子性(Atomicity) • 一貫性(Consistency) • 独立性(Isolation) • 永続性(Durability) ACIDとCAP定理とBASE ACID
トランザクションに含まれる個々の手順が すべて実行される or すべて実行されない のどちらかになる性質
• 原子性(Atomicity) • 一貫性(Consistency) • 独立性(Isolation) • 永続性(Durability) ACIDとCAP定理とBASE ACID
トランザクションの前後でデータの整合性が保たれ、 矛盾の無い状態が継続される性質
• 原子性(Atomicity) • 一貫性(Consistency) • 独立性(Isolation) • 永続性(Durability) ACIDとCAP定理とBASE ACID
トランザクション実行中の処理過程が 外部から隠蔽され、 他の処理などに影響を与えない性質
• 原子性(Atomicity) • 一貫性(Consistency) • 独立性(Isolation) • 永続性(Durability) ACIDとCAP定理とBASE ACID
トランザクションが完了した場合に、 その結果は記録され、失われることはない性質
CAP定理 ACIDとCAP定理とBASE
分散データベースにおける、 Webサービスを想定した作られた定理 ノード間のデータ複製に置いて、 同時に3つの保証を提供することはできない ACIDとCAP定理とBASE CAP定理
分散データベースにおける、 Webサービスを想定した作られた定理 ノード間のデータ複製に置いて、 同時に3つの保証を提供することはできない ACIDとCAP定理とBASE CAP定理 CAP定理を見直す。“CAPの3つから2つを選ぶ”と いう説明はミスリーディングだった --
Eric Brewer 引用元 : https://www.publickey1.jp/blog/13/capcap32.html
• 一貫性(Consistency) • 可用性(Availability) • 分断耐性(Partition-tolerance) ACIDとCAP定理とBASE CAP定理
• 一貫性(Consistency) • 可用性(Availability) • 分断耐性(Partition-tolerance) ACIDとCAP定理とBASE CAP定理 全てのクライアントが
常に同一のデータ、またはエラーを参照する性質
• 一貫性(Consistency) • 可用性(Availability) • 分断耐性(Partition-tolerance) ACIDとCAP定理とBASE CAP定理 全てのクライアントが
読み込みと書き込みが出来る性質
• 一貫性(Consistency) • 可用性(Availability) • 分断耐性(Partition-tolerance) ACIDとCAP定理とBASE CAP定理 物理ネットワークが分断されても
間違った結果が発生しない性質
ACIDとCAP定理とBASE CAP定理 一貫性(C) 可用性(A) 分断耐性(P)
ACIDとCAP定理とBASE CA重視型 一貫性(C) 可用性(A) 分断耐性(P) PostgreSQL MySQL RDBMS 全般
ACIDとCAP定理とBASE AP重視型 可用性(A) 分断耐性(P) 一貫性(C) DyamoDB Cassandra ...など
ACIDとCAP定理とBASE CP重視型 一貫性(C) 分断耐性(P) 可用性(A) MongoDB Redis ...など
BASE ACIDとCAP定理とBASE
一貫性(C)と可用性(A)を重視した場合はACIDを 満たす必要がある それに対し、一貫性(C)よりも可用性(A)と分断耐 性(P)を重視する場合はBASEを満たす必要が ある ACIDとCAP定理とBASE BASE
• Basically Available • Soft-State • Eventually Consistent ACIDとCAP定理とBASE BASE
• Basically Available • Soft-State • Eventually Consistent ACIDとCAP定理とBASE BASE
可用性が高く、常に利用可能である どんなときもアプリケーションが動く
• Basically Available • Soft-State • Eventually Consistent ACIDとCAP定理とBASE BASE
厳密なステータスではなく、 送られてくる情報によって変化する 常に整合性を保たなくて良い
• Basically Available • Soft-State • Eventually Consistent 最終的に一貫性が保たれる 結果整合性
ACIDとCAP定理とBASE BASE
ACID(CA型)とBASE(AP型) ACIDとCAP定理とBASE
データベースの背景を知ると 特徴が見えてくる ACIDとCAP定理とBASE
1. 自己紹介 2. RDBとNOSQL 3. ACIDとCAP定理とBASE 4. アーキテクチャとデータモデル 5. まとめ
あじぇんだ
ACID、CAP定理、BASEを紐解くと アーキテクチャで重視した部分が見えてくる アーキテクチャとデータモデル
ACID(CA型)とBASE(AP型) アーキテクチャとデータモデル
ACID(CA型)とBASE(AP型) ↓ どのように実現をするか アーキテクチャとデータモデル
アーキテクチャが見えてくる アーキテクチャとデータモデル
マスタ型とP2P型 アーキテクチャとデータモデル
アーキテクチャとデータモデル マスタ型 マスタ スレーブ スレーブ スレーブ
アーキテクチャとデータモデル P2P型 マスタ マスタ マスタ マスタ
データモデル アーキテクチャとデータモデル
アーキテクチャとデータモデル リレーショナル user_id name 1 hoge 2 fuga 3
foo user_id role_id 1 1 1 3 3 2 4 4 role_id name 1 開発部 2 営業部 3 運用部 4 総務部
アーキテクチャとデータモデル リレーショナル user_id name 1 hoge 2 fuga 3
foo user_id role_id 1 1 1 3 3 2 4 4 role_id name 1 開発部 2 営業部 3 運用部 4 総務部 集合を定義する 関係を定義する
アーキテクチャとデータモデル キーバリュー key value 1 hoge 2 fuga 3 foo
4 bar fuga 次郎 hoge 太郎 foo 花子
アーキテクチャとデータモデル キーバリュー key value 1 hoge 2 fuga 3 foo
4 bar fuga 次郎 hoge 太郎 foo 花子 1:1の関係を保持する
アーキテクチャとデータモデル カラム指向 name hoge fuga bar foo test 部門 開発
営業 総務 企画 経理
アーキテクチャとデータモデル ドキュメント指向 name : hoge role : 開発 age :
30 name : fuga role : 開発,営業 from : 広島 age : 30 name : foo role : 総務 それぞれが独立したドキュメント ドキュメントにはユニークなIDでアクセス
他にも多種多様にデータモデルはある アーキテクチャとデータモデル
RDBとNOSQL アーキテクチャ / データモデル マスタ型 P2P型 その他 リレーショナル MySQL PostgreSQL
ProxySQL pgpool-2 キーバリュー Redis Memcached Redis Cluster カラム指向 Redshift Cassandra ドキュメント指向 MongoDB グラフ指向 Neo4J InfiniteGraph ※代表的なデータベースのソフトウェアの抜粋
1. 自己紹介 2. RDBとNOSQL 3. ACIDとCAP定理とBASE 4. アーキテクチャとデータモデル 5. まとめ
あじぇんだ
アーキテクチャ x データモデル ↓ データベースの種類と特徴を決める まとめ
保存したいデータモデル + 重視したいアーキテクチャ まとめ
ACIDとCAP定理とBASE 軸を持って比較する まとめ
長所と短所を知る ↓ 要件に合わせる まとめ
“もし現在のアプリケーションがRDBで 上手く動いているのであれば、 それをNOSQLに置換する理由は無いし、 それを勧めたりはしない” Nate McCall (@zznate)
データベースの種類と特徴を捉えて 適切なデータベースを選ぶ まとめ
ご清聴ありがとうございました まとめ