Upgrade to Pro — share decks privately, control downloads, hide ads and more …

自作Cコンパイラ 8時間の奮闘

soukouki
September 14, 2024

自作Cコンパイラ 8時間の奮闘

2024-09-07 セキュリティキャンプ アフターイベント
2024-09-14 traP & Zli 合同LT

で発表したスライドになります。

soukouki

September 14, 2024
Tweet

More Decks by soukouki

Other Decks in Technology

Transcript

  1. 10ccのコード 第1世代 GCC 10ccのコード 第2世代 第1世代 10ccのコード 第3世代 第2世代 達成したこと

    期間中に見事 セルフホスト を達成す ることが出来ました。セルフ ホストとは、自作Cコンパイ ラ自身で、自分自身をコンパ イルすることです。図でいう 第2世代以降を作るのがセル フホストになります。 1. セルフホストの要件には、第2世代と第3世代を一致させることで不動点を 作るというのもありますが、今回は省略します。 6
  2. Cコンパイラゼミで得られたこと C言語に対する深い知識 例: switch文の構文、知ってますか? → Duff's device で検索! 例: スタック領域に変数を確保するって、何が行われているの?

    アセンブリの知識 わからない命令の調べ方 基本的な演算, ジャンプ, レジスタの扱いなど 難しいバグについても根気強く向き合う経験 セルフホストの際には込み入ったバグが多く発生します。 コードは全部手元にあるので、気合を入れてデバッグすれば必ず解 決できます! 7
  3. フランケンコンパイル セルフホストのデバッグをする際に、いきなり全部セルフホストをす ると大変なので、「フランケンコンパイル」という手法を使います。 10cc のソースコードの一部を 10cc (第1世代)でコンパイルし、残り をGCCでコンパイルして、どのファイルがバグの原因なのかを探りま す。 GCCとの相互運用性を保つために、

    10cc とGCCの出力するアセンブ リが互換性を持つようにしないといけません。今回は、構造体のアラ イメントをきちんと実装するだけで、フランケンコンパイルが出来る ようになりました。(バグが出始めてから2時間経過) 1. フランケンコンパイルという名称は、Cコンパイラゼミの講師であるhsjoihs氏が名付けたものです。 セキュキャンのCコンパイルゼミでしか使われていない独自用語らしいで す。 2. 実際には、構造体のアライメントをテストするために、 offsetof というものも実装しました。 11
  4. 10cc の構造 10cc は、以下のように4つの部分と、それを呼び出す main.c に別れ ています。それぞれの部分ごとにフランケンコンパイルを試していき ます。 字句解析 構文解析

    意味解析 コード生成 トークン列 構文木 構文木 ソースコード アセンブリ 1. 他にも map.c というファイルがあったりしますが、ここでは省略します。 12
  5. 10ccのコード 第1世代 GCC 10ccのコード 第2世代 第1世代 10ccのコード 第3世代 第2世代 ここで

    main.c を睨みつけた くなるのですが、実はそう上 手くは行きません。 直接 main.c に問題があるの ではなく、 main.c をコンパ イルした第1世代のどこかに 問題があるということです。 main.c をいくら睨みつけて も、 main.c のC言語のコード は正しいのです。 14
  6. この時点でのエラー状況 map.cだけ自作コンパイラ、それ以外はgcc → 成功 main.cだけ自作コンパイラ、それ以外はgcc → 謎のエラー 「関数の戻り値の型がありません」!? 字句解析だけ →

    失敗(セグフォ) 構文解析だけ → 成功 意味解析だけ → 成功 コード生成だけ → 成功 次に字句解析だけ 10cc のパターンを追ってみることにしました。 18
  7. 第1世代 (壊れている) 10ccのコード GCC 10ccのコード 第1世代(壊) 第2世代 (壊れている) この状況から、以下の形でバ グがあると予想できます。

    1. 10cc のどこかにバグが あり、壊れた第1世代が 出来る。 2. その第1世代で字句解析 をコンパイルして、壊れ た第2世代が出来る。 20
  8. 3. 第2世代を動かすと、字句解析部分でメモリなどを壊している。 4. メモリなどが壊れた結果、第2世代の意味解析でセグフォが起き る。 構文解析 意味解析 トークン列(壊) 構文木(壊) ソースコード

    字句解析(壊) セグフォ! 1. 実装していない機能があることに気づいて実装したり、16バイトアライメントを疑ったりとひと悶着あったのですが、割愛します。 21
  9. memcmpが怪しい GDBでデバッグを続けると、 memcmp という標準ライブラリの関数を 呼び出した際にセグフォが起きていました。 さらに、 memcmp に渡している引数を確認すると、ヒープメモリに確 保しているはずのアドレスが 0xf7caf015

    と、異様に短いことがわか りました。 メモリアドレスを処理するどこかで、64ビット必要なのに32ビット で計算してしまったのでしょう。意味解析より前の、どこかで。 1. 実は、GDBの出力を読み誤った結果、最初は memcmp ではなく strlen が原因だと思いこんでいたりしました。 2. この環境(x86_64, ArchLinux)では、正しいヒープ領域のアドレスは 0x611b3a3ca2a0 のように、16進数で12桁になります。しかし、今回の結果は8桁しかありません。 22
  10. 怪しい箇所を発見! cur = new_token(TK_SYMBOL, cur, p++, 1, file, line); このプログラムは正しいC言語のプログラムです。しかし、Cコンパ

    イラを自作した人は分かるはずです。 インクリメントは怪しい と。 バグの匂いがプンプンします。 1. これを解いている際には、関数呼び出しとインクリメントが組み合わさったせいなのでは?と思っていました。実際は関数呼び出しは冤罪でした。 25
  11. バグの原因 バグ : mov edi, [rax] 正常 : mov rdi,

    [rax] アセンブリの命令が、 rdi レジスタ(64ビット)ではなく、 edi レジス タ(32ビット)を使っていました。これが原因で上位32ビットが消えて しまっていたのです。 たった1文字の違いで、8時間もデバッグをする羽目になりました。 さらに、前半の main.c のバグについても、この rdi と edi のバグが 原因になっていることがわかりました。 27